Laura Millares
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Millares.
Journal of Clinical Microbiology | 2014
Marian Garcia-Nuñez; Laura Millares; Xavier Pomares; Rafaela Ferrari; Vicente Pérez-Brocal; Miguel Gallego; Mateu Espasa; Andrés Moya; Eduard Monsó
ABSTRACT Bronchial colonization by potentially pathogenic microorganisms (PPMs) is often demonstrated in chronic obstructive pulmonary disease (COPD), but culture-based techniques identify only a portion of the bacteria in mucosal surfaces. The aim of the study was to determine changes in the bronchial microbiome of COPD associated with the severity of the disease. The bronchial microbiome of COPD patients was analyzed by 16S rRNA gene amplification and pyrosequencing in sputum samples obtained during stable disease. Seventeen COPD patients were studied (forced expiratory volume in the first second expressed as a percentage of the forced vital capacity [FEV1%] median, 35.0%; interquartile range [IQR], 31.5 to 52.0), providing a mean of 4,493 (standard deviation [SD], 2,598) sequences corresponding to 47 operational taxonomic units (OTUs) (SD, 17) at a 97% identity level. Patients were dichotomized according to their lung function as moderate to severe when their FEV1% values were over the median and as advanced when FEV1% values were lower. The most prevalent phyla in sputum were Proteobacteria (44%) and Firmicutes (16%), followed by Actinobacteria (13%). A greater microbial diversity was found in patients with moderate-to-severe disease, and alpha diversity showed a statistically significant decrease in patients with advanced disease when assessed by Shannon (ρ = 0.528; P = 0.029, Spearman correlation coefficient) and Chao1 (ρ = 0.53; P = 0.028, Spearman correlation coefficient) alpha-diversity indexes. The higher severity that characterizes advanced COPD is paralleled by a decrease in the diversity of the bronchial microbiome, with a loss of part of the resident flora that is replaced by a more restricted microbiota that includes PPMs.
Respiratory Research | 2010
Marc Miravitlles; Alicia Marin; Eduard Monsó; Sara Vilà; Cristian de la Roza; Ramona Hervás; Cristina Esquinas; Marian García; Laura Millares; Josep Morera; Antoni Torres
BackgroundBacterial colonisation in chronic obstructive pulmonary disease (COPD) contributes to airway inflammation and modulates exacerbations. We assessed risk factors for bacterial colonisation in COPD.MethodsPatients with stable COPD consecutively recruited over 1 year gave consent to provide a sputum sample for microbiologic analysis. Bronchial colonisation by potentially pathogenic microorganisms (PPMs) was defined as the isolation of PPMs at concentrations of ≥102 colony-forming units (CFU)/mL on quantitative bacterial culture. Colonised patients were divided into high (>105 CFU/mL) or low (<105 CFU/mL) bacterial load.ResultsA total of 119 patients (92.5% men, mean age 68 years, mean forced expiratory volume in one second [FEV1] [% predicted] 46.4%) were evaluated. Bacterial colonisation was demonstrated in 58 (48.7%) patients. Patients with and without bacterial colonisation showed significant differences in smoking history, cough, dyspnoea, COPD exacerbations and hospitalisations in the previous year, and sputum colour. Thirty-six patients (62% of those colonised) had a high bacterial load. More than 80% of the sputum samples with a dark yellow or greenish colour yielded PPMs in culture. In contrast, only 5.9% of white and 44.7% of light yellow sputum samples were positive (P < 0.001). Multivariate analysis showed an increased degree of dyspnoea (odds ratio [OR] = 2.63, 95% confidence interval [CI] 1.53-5.09, P = 0.004) and a darker sputum colour (OR = 4.11, 95% CI 2.30-7.29, P < 0.001) as factors associated with the presence of PPMs in sputum.ConclusionsAlmost half of our population of ambulatory moderate to very severe COPD patients were colonised with PPMs. Patients colonised present more severe dyspnoea, and a darker colour of sputum allows identification of individuals more likely to be colonised.
European Respiratory Journal | 2009
Marc Miravitlles; Alicia Marin; Eduard Monsó; Sara Vilà; C. de la Roza; Ramona Hervás; Cristina Esquinas; Marian García; Laura Millares; Josep Morera; Antoni Torres
This study was designed to investigate the efficacy of moxifloxacin for the eradication of bacterial colonisation of the airways in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD). Out of 119 stable patients with COPD screened, 40 (mean age 69 yrs, mean forced expiratory volume in 1 s 50% predicted) were colonised with potentially pathogenic microorganisms (PPMs) and were included in a randomised, double-blind, placebo-controlled trial with moxifloxacin 400 mg daily for 5 days. Eradication rates were 75% with moxifloxacin and 30% with placebo at 2 weeks (p = 0.01). Bacterial persistence at 8 weeks was still higher (not significantly) in the placebo arm (five (25%) out of 20 versus one (5%) out of 20; p = 0.18). The frequencies of acquisition of a new PPM were high and similar in both treatment groups; consequently, the prevalence of colonisation at 8 weeks was also similar between treatment arms. No difference was found in the number of patients with exacerbations during the 5-month follow-up. Only the acquisition of a new PPM during follow-up showed a statistically significant relationship with occurrence of an exacerbation. Moxifloxacin was effective in eradicating PPMs in patients with positive sputum cultures. However, most patients were recolonised after 8 weeks of follow-up. Acquisition of a new strain of bacteria was associated with an increased risk of developing an exacerbation.
COPD: Journal of Chronic Obstructive Pulmonary Disease | 2012
Alicia Marin; Judith Garcia-Aymerich; Jaume Sauleda; J. Belda; Laura Millares; Marian Garcia-Nuñez; Ignasi Serra; Marta Benet; Alvar Agusti; Josep M. Antó; Eduard Monsó
Abstract The recovery of potentially pathogenic microorganisms (PPMs) from bronchial secretions is associated with a local inflammatory response in COPD patients. The objective of this study was to determine the relationships between bronchial colonisation and both bronchial and systemic inflammation in stable COPD. In COPD patients recruited on first admission for an exacerbation, bacterial sputum cultures, interleukin (IL)-1β, IL-6 and IL-8 levels, and blood C-reactive protein (CRP) were measured in stable condition. Bronchial colonisation was found in 39 of the 133 (29%) patients and was significantly related to higher sputum IL-1β (median [percentile 25–75]; 462 [121–993] vs. 154 [41–477] pg/ml, p = 0.002), IL-6 (147 [71–424] vs. 109 [50–197] pg/ml, p = 0.047) and IL-8 values (15 [9–19] vs. 8 [3–15] (×103) pg/ml, p = 0.002). Patients with positive cultures also showed significantly elevated levels of serum CRP (6.5 [2.5–8.5] vs. 3.5 [1.7–5.4] mg/l, p = 0.016). Bronchial colonisation by Haemophilus influenzae was associated with higher levels of IL-1β and IL-8 and clinically significant worse scores on the activity and impact domains of the St. Georges Respiratory Questionnaire. In conclusion, bronchial colonisation is associated with bronchial inflammation and high blood CRP levels in stable COPD patients, being Haemophilus influenzae related to a more severe inflammatory response and impairment in health-related quality of life.
PLOS ONE | 2015
Laura Millares; Vicente Pérez-Brocal; Rafaela Ferrari; Miguel Gallego; Xavier Pomares; Marian Garcia-Nuñez; Concepción Montón; Silvia Capilla; Eduard Monsó; Andrés Moya
The course of chronic obstructive pulmonary disease (COPD) is frequently aggravated by exacerbations, and changes in the composition and activity of the microbiome may be implicated in their appearance. The aim of this study was to analyse the composition and the gene content of the microbial community in bronchial secretions of COPD patients in both stability and exacerbation. Taxonomic data were obtained by 16S rRNA gene amplification and pyrosequencing, and metabolic information through shotgun metagenomics, using the Metagenomics RAST server (MG-RAST), and the PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) programme, which predict metagenomes from 16S data. Eight severe COPD patients provided good quality sputum samples, and no significant differences in the relative abundance of any phyla and genera were found between stability and exacerbation. Bacterial biodiversity (Chao1 and Shannon indexes) did not show statistical differences and beta-diversity analysis (Bray-Curtis dissimilarity index) showed a similar microbial composition in the two clinical situations. Four functional categories showed statistically significant differences with MG-RAST at KEGG level 2: in exacerbation, Cell growth and Death and Transport and Catabolism decreased in abundance [1.6 (0.2–2.3) vs 3.6 (3.3–6.9), p = 0.012; and 1.8 (0–3.3) vs 3.6 (1.8–5.1), p = 0.025 respectively], while Cancer and Carbohydrate Metabolism increased [0.8 (0–1.5) vs 0 (0–0.5), p = 0.043; and 7 (6.4–9) vs 5.9 (6.3–6.1), p = 0.012 respectively]. In conclusion, the bronchial microbiome as a whole is not significantly modified when exacerbation symptoms appear in severe COPD patients, but its functional metabolic capabilities show significant changes in several pathways.
Respiratory Research | 2012
Laura Millares; Alicia Marin; Judith Garcia-Aymerich; Jaume Sauleda; J. Belda; Eduard Monsó
BackgroundHaemophilus influenzae is the most common colonizing bacteria of the bronchial tree in chronic obstructive pulmonary disease (COPD), and positive cultures for this potentially pathogenic microorganism (PPM) has been associated with local inflammation changes that may influence the relationships between H. influenzae and the bronchial mucosa.MethodsA cross-sectional analysis of stable COPD patients enrolled in the Phenotype and Course of Chronic Obstructive Pulmonary Disease (PAC-COPD) Study, focusing on bronchial colonization by H. influenzae, was performed. Specific IgA against the PPM was measured by optical density, and metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) using ELISA in sputum samples. Levels in patients colonized by H. influenzae and non-colonized patients were compared.ResultsSputum supernatant for the measurement of specific IgA against H. influenzae was available from 54 stable COPD patients, who showed levels of specific IgA significantly lower in colonized (n=21) than in non-colonized patients (n=33) (15 [4-37] versus 31 [10-75], p=0.033, Mann-Whitney U test). Proenzyme MMP-9 was measured in 44 patients, and it was higher in colonized (n=12, 1903 [1488-6699] ng/ml) than in non-colonized patients (n=32, 639 [373-972] ng/ml) (p<0.001, Mann-Whitney U test). Active form of MMP-9 was also higher in colonized (126 [25-277] ng/ml) than in non-colonized patients (39 [14-68] ng/ml) (p=0.021, Mann-Whitney U test), and the molar ratio between proenzyme MMP-9 and TIMP-1 was above 1 (2.1 [0.1-12.5]) in colonized patients, significantly higher than the ratio found in non-colonized patients (0.2 [0.08-0.5]) (p=0.030, Mann-Whitney U test).ConclusionsClinically stable COPD patients colonized by H. influenzae had lower levels of specific IgA against the microorganism and higher values of the active form of MMP-9 in their sputum supernatant than non-colonized patients. Bronchial colonization by H. influenzae may cause structural changes in the extracellular matrix through a defective defense and the production of active metalloproteinases.
BMC Microbiology | 2017
Laura Millares; Guadalupe Bermudo; Vicente Pérez-Brocal; Christian Domingo; Marian Garcia-Nuñez; Xavier Pomares; Andrés Moya; Eduard Monsó
BackgroundThe bronchial microbiome in chronic lung diseases presents an abnormal pattern, but its microbial composition and regional differences in severe asthma have not been sufficiently addressed. The aim of the study was to describe the bacterial community in bronchial mucosa and secretions of patients with severe chronic asthma chronically treated with corticosteroids in addition to usual care according to Global Initiative for Asthma. Bacterial community composition was obtained by 16S rRNA gene amplification and sequencing, and functional capabilities through PICRUSt.ResultsThirteen patients with severe asthma were included and provided 11 bronchial biopsies (BB) and 12 bronchial aspirates (BA) suitable for sequence analyses. Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria showed relative abundances (RAs) over 5% in BB, a cutoff that was reached by Streptococcus and Prevotella at genus level. Legionella genus attained a median RA of 2.7 (interquartile range 1.1–4.7) in BB samples. In BA a higher RA of Fusobacteria was found, when compared with BB [8.7 (5.9–11.4) vs 4.2 (0.8–7.5), p = 0.037], while the RA of Proteobacteria was lower in BA [4.3 (3.7–6.5) vs 17.1 (11.2–33.4), p = 0.005]. RA of the Legionella genus was also significantly lower in BA [0.004 (0.001–0.02) vs. 2.7 (1.1–4.7), p = 0.005]. Beta-diversity analysis confirmed the differences between the microbial communities in BA and BB (R2 = 0.20, p = 0.001, Adonis test), and functional analysis revealed also statistically significant differences between both types of sample on Metabolism, Cellular processes, Human diseases, Organismal systems and Genetic information processing pathways.ConclusionsThe microbiota in the bronchial mucosa of severe asthma has a specific pattern that is not accurately represented in bronchial secretions, which must be considered a different niche of bacteria growth.
Oncology Reports | 2014
Laura Millares; Antoni Rosell; Laia Setó; José Sanz; Felipe Andreo; Eduard Monsó
Assessment of the methylation status of genes related to the development of lung cancer (LC) in bronchial secretions has been proposed as a biomarker for early detection. Several techniques are available to detect gene methylation, and the method chosen may have an effect on the results. A cross-sectional study was conducted in which the methylation status of DAPK, CDKN2A (p16) and RASSF1A genes in sputum and bronchial washing (BW) from subjects at risk for LC was analyzed. The methylation results of both samples were compared, considering BW as the reference. Results obtained by methylation-sensitive PCR (MSP) were validated by methylation-sensitive high-resolution melting (MS-HRM). The methylation results obtained in sputum and BW samples did not show statistically significant differences for any of the three genes analyzed in 65 subjects (McNemar test>0.05). Concordant results between sputum and BW were found in 40 patients for DAPK (61%), in 52 patients for p16 (80%) and in 63 patients for RASSF1 (97%). More methylated samples were found in BW, however, and sputum sensitivities and specificities for the identification of methylation status were 44 and 72% for DAPK gene, 21 and 94% for p16 and 100 and 98% for RASSF1A, respectively. When MSP results were validated by MS-HRM, DAPK and p16 gene samples methylated by MSP appeared to be unmethylated by MS-HRM. One sample showing methylation of RASSF1A gene also showed methylation when tested following MS-HRM procedure. Sputum and BW samples may be considered equally valid for the identification of methylated genes in bronchial secretions. The low sensitivity of sputum for the assessment of the methylation status of DAPK and p16 genes, however, suggests that the analysis of two or more sputum samples, or of a BW obtained semi-invasively, would be needed to attain higher reliability, together with the use of confirmatory techniques for positive results.
Future Microbiology | 2017
Marian Garcia-Nuñez; Sara Marti; Carmen Puig; Vicente Pérez-Brocal; Laura Millares; Salud Santos; Carmen Ardanuy; Andrés Moya; Josefina Liñares; Eduard Monsó
AIM The bronchial microbiome of severe chronic obstructive pulmonary disease patients colonized by Pseudomonas aeruginosa was analyzed using 16S rRNA gene sequencing to identify differences related to biofilm-forming capacity. PATIENTS & METHODS Patient sputum samples from 21 patients were studied. RESULTS Statistically significant differences related to biofilm-forming capacity were only found for genera with relative abundances <1%, and Fusobacterium was over-represented when biofilm-forming capacity was high. Genera with relative abundances >50% which increased from baseline were observed in 10/14 exacerbations, but corresponded to Pseudomonas only in three episodes, while other pathogenic genera were identified in seven. CONCLUSION The bronchial microbiome shows differences according with P. aeruginosa biofilm-forming capacity. Pathogenic microorganisms other than P. aeruginosa cause a significant part of the exacerbations in colonized chronic obstructive pulmonary disease patients.
Lung Cancer | 2018
Laura Millares; Esther Barreiro; Roldán Cortés; Anabel Martinez-Romero; Cristina Balcells; Marta Cascante; Ana Belen Enguita; Carlos J.P. Álvarez; Ramón Rami-Porta; Julio Sánchez de Cos; Luis Seijo; Eduard Monsó
INTRODUCTION Non-small cell lung cancer (NSCLC) patients diagnosed in early stage and surgically-treated have five-year mortality rate >20%. The identification of biomarkers able to predict progression and death may help to identify patients needing closer follow-up. METHODS A retrospective cohort of early-stage surgically-treated NSCLC patients enrolled in the International Association for the Study of Lung Cancer (IASLC) Staging Project was created, and tissue Microarrays (TMAs) were constructed with tumor and non-tumor lung tissue. Pentose phosphate pathway (PPP) proteins (transketolase [TKT] and transketolase-like 1 [TKTL1]), inflammatory markers (cyclooxygenase-2 [COX-2], tumor necrosis factor alpha [TNF-α], interleukin 1 beta [IL1β], nuclear factor kappa-light-chain-enhancer of activated B cells [NFκB]-p65 and antigen Ki-67), and programmed death-ligand 1 (PDL1) were measured by immunohistochemistry. RESULTS NSCLC patients with adenocarcinoma (ADC) or squamous cell carcinoma (SCC) were included in the study (n = 199). TKT and TKTL1 were significantly higher in ADC than in non-tumor tissue (p < 0.001). Higher values were also observed in NSCLC for all the inflammatory markers, with figures >30% above those of non-tumor tissue (p < 0.001). PDL1 analysis showed a higher percentage of positivity in ADC than in non-tumor tissue (p < 0.001). Multivariate Cox proportional hazards modeling confirmed that high IL1β level in tumor tissue was independently associated with 3-year mortality in NSCLC [HR = 2.05, 95% CI (1.1-3.7), p = 0.019], a relationship driven by ADC subtype. CONCLUSION This study confirms an increase in metabolic activity and an inflammatory response in tumor tissue of early stage NSCLC, and a significant relationship between high levels of IL1β in the tumor and poor prognosis in ADC.