Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura P. Hale is active.

Publication


Featured researches published by Laura P. Hale.


Journal of Clinical Microbiology | 2005

Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease.

Alexander Swidsinski; Jutta Weber; Vera Loening-Baucke; Laura P. Hale; Herbert Lochs

ABSTRACT The composition and spatial organization of the mucosal flora in biopsy specimens from patients with inflammatory bowel disease (IBD; either Crohns disease or ulcerative colitis), self-limiting colitis, irritable-bowel syndrome (IBS), and healthy controls were investigated by using a broad range of fluorescent bacterial group-specific rRNA-targeted oligonucleotide probes. Each group included 20 subjects. Ten patients who had IBD and who were being treated with antibiotics were also studied. Use of nonaqueous Carnoy fixative to preserve the mucus layer was crucial for detection of bacteria adherent to the mucosal surface (mucosal bacteria). No biofilm was detectable in formalin-fixed biopsy specimens. Mucosal bacteria were found at concentrations greater than 109/ml in 90 to 95% of IBD patients, 95% of patients with self-limiting colitis, 65% of IBS patients, and 35% of healthy controls. The mean density of the mucosal biofilm was 2 powers higher in IBD patients than in patients with IBS or controls, and bacteria were mostly adherent. Bacteroides fragilis was responsible for >60% of the biofilm mass in patients with IBD but for only 30% of the biofilm mass in patients with self-limiting colitis and <15% of the biofilm mass in patients with IBS. In contrast, bacteria which positively hybridized with the probe specific for Eubacterium rectale-Clostridium coccoides accounted for >40% of the biofilm in IBS patients but for <15% of the biofilm in IBD patients. In patients treated with (5-ASA) or antibiotics, the biofilm could be detected with 4,6-diamidino-2-phenylindole but did not hybridize with fluorescence in situ hybridization probes. A Bacteroides fragilis biofilm is the main feature of IBD. This was not previously recognized due to a lack of appropriate tissue fixation. Both 5-ASA and antibiotics suppress but do not eliminate the adherent biofilm.


Immunology Today | 1989

CD44 — A molecule involved in leukocyte adherence and T-cell activation

Barton F. Haynes; Marilyn J. Telen; Laura P. Hale; Stephen M. Denning

The study of cell surface molecules that are involved in interactions between immune and non-hematopoietic cells in various microenvironments is currently an area of great interest. One molecule that appears to be involved in multiple steps of normal immune cell function is now called CD44 and has been known previously as Pgp-1, In(Lu)-related p80, Hermes, ECM-III and HUTCH-I. Within the past year, the co-identity of all of these independently discovered molecules has become apparent, and the role of the CD44 molecule in T-cell activation has been discovered. In this review, Barton Haynes and his colleagues bring together numerous divergent lines of investigation on the CD44 molecule, review the many functional roles attributed to it, and present a unifying view of how, with numerous ligands, it may participate in several areas of normal immune cell function.


Cell Metabolism | 2014

The Glucose Transporter Glut1 Is Selectively Essential for CD4 T Cell Activation and Effector Function

Andrew N. Macintyre; Valerie A. Gerriets; Amanda G. Nichols; Ryan D. Michalek; Michael C. Rudolph; Divino Deoliveira; Steven M. Anderson; E. Dale Abel; Benny J. Chen; Laura P. Hale; Jeffrey C. Rathmell

CD4 T cell activation leads to proliferation and differentiation into effector (Teff) or regulatory (Treg) cells that mediate or control immunity. While each subset prefers distinct glycolytic or oxidative metabolic programs in vitro, requirements and mechanisms that control T cell glucose uptake and metabolism in vivo are uncertain. Despite expression of multiple glucose transporters, Glut1 deficiency selectively impaired metabolism and function of thymocytes and Teff. Resting T cells were normal until activated, when Glut1 deficiency prevented increased glucose uptake and glycolysis, growth, proliferation, and decreased Teff survival and differentiation. Importantly, Glut1 deficiency decreased Teff expansion and the ability to induce inflammatory disease in vivo. Treg cells, in contrast, were enriched in vivo and appeared functionally unaffected and able to suppress Teff, irrespective of Glut1 expression. These data show a selective in vivo requirement for Glut1 in metabolic reprogramming of CD4 T cell activation and Teff expansion and survival.


The New England Journal of Medicine | 1999

Transplantation of Thymus Tissue in Complete DiGeorge Syndrome

M. Louise Markert; Andreas Boeck; Laura P. Hale; Amy L. Kloster; Tanya M. McLaughlin; Milena N. Batchvarova; Richard A. Koup; Donna D. Kostyu; Ward Fe; Henry E. Rice; Sherrie E. Schiff; Rebecca H. Buckley; Barton F. Haynes; Samuel M. Mahaffey

BACKGROUND The DiGeorge syndrome is a congenital disorder that affects the heart, parathyroid glands, and thymus. In complete DiGeorge syndrome, patients have severely reduced T-cell function. METHODS We treated five infants (age, one to four months) with complete DiGeorge syndrome by transplantation of cultured postnatal thymus tissue. Follow-up evaluations included immune phenotyping and proliferative studies of peripheral-blood mononuclear cells plus biopsy of the thymus allograft. Thymic production of new T cells was assessed in peripheral blood by tests for T-cell-receptor recombination excision circles, which are formed from excised DNA during the rearrangement of T-cell-receptor genes. RESULTS After the transplantation of thymus tissue, T-cell proliferative responses to mitogens developed in four of the five patients. Two of the patients survived with restoration of immune function; three patients died from infection or abnormalities unrelated to transplantation. Biopsies of grafted thymus in the surviving patients showed normal morphologic features and active T-cell production. In three patients, donor T cells could be detected about four weeks after transplantation, although there was no evidence of graft-versus-host disease on biopsy or at autopsy. In one patient, the T-cell development within the graft was demonstrated to accompany the appearance of recently developed T cells in the periphery and coincided with the onset of normal T-cell function. In one patient, there was evidence of thymus function and CD45RA+CD62L+ T cells more than five years after transplantation. CONCLUSIONS In some infants with profound immunodeficiency and complete DiGeorge syndrome, the transplantation of thymus tissue can restore normal immune function. Early thymus transplantation - before the development of infectious complications - may promote successful immune reconstitution.


Obstetrics & Gynecology | 2005

Adherent Biofilms in Bacterial Vaginosis

Alexander Swidsinski; Werner Mendling; Vera Loening-Baucke; Axel Ladhoff; Sonja Swidsinski; Laura P. Hale; Herbert Lochs

OBJECTIVE: Bacterial vaginosis is a common infectious disorder. Although known since ancient times, little progress has occurred in identifying causal factors. Our aims were to study the bacterial community structure and the spatial organization of microbiota on the epithelial surfaces of vaginal biopsy specimens. METHODS: We investigated the composition and spatial organization of bacteria associated with the vaginal epithelium in biopsy specimens from 20 patients with bacterial vaginosis and 40 normal premenopausal and postmenopausal controls using a broad range of fluorescent bacterial group-specific rRNA-targeted oligonucleotide probes. RESULTS: Bacterial vaginosis was associated with greater occurrence and higher concentrations of a variety of bacterial groups. However, only Gardnerella vaginalis developed a characteristic adherent biofilm that was specific for bacterial vaginosis. CONCLUSION: A biofilm comprised of confluent G vaginalis with other bacterial groups incorporated in the adherent layer is a prominent feature of bacterial vaginosis. LEVEL OF EVIDENCE: II-2


Journal of Immunology | 2000

Leukemia Inhibitory Factor, Oncostatin M, IL-6, and Stem Cell Factor mRNA Expression in Human Thymus Increases with Age and Is Associated with Thymic Atrophy

Gregory D. Sempowski; Laura P. Hale; John S. Sundy; Janice M. Massey; Richard A. Koup; Daniel C. Douek; Dhavalkumar D. Patel; Barton F. Haynes

The roles that thymus cytokines might play in regulating thymic atrophy are not known. Reversing thymic atrophy is important for immune reconstitution in adults. We have studied cytokine mRNA steady-state levels in 45 normal human (aged 3 days to 78 years) and 34 myasthenia gravis thymuses (aged 4 to 75 years) during aging, and correlated cytokine mRNA levels with thymic signal joint (sj) TCR δ excision circle (TREC) levels, a molecular marker for active thymopoiesis. LIF, oncostatin M (OSM), IL-6, M-CSF, and stem cell factor (SCF) mRNA were elevated in normal and myasthenia gravis-aged thymuses, and correlated with decreased levels of thymopoiesis, as determined by either decreased keratin-positive thymic epithelial space or decreased thymic sjTRECs. IL-7 is a key cytokine required during the early stages of thymocyte development. Interestingly, IL-7 mRNA expression did not fall with aging in either normal or myasthenia gravis thymuses. In vivo administration of LIF, OSM, IL-6, or SCF, but not M-CSF, i.p. to mice over 3 days induced thymic atrophy with loss of CD4+, CD8+ cortical thymocytes. Taken together, these data suggest a role for thymic cytokines in the process of thymic atrophy.


Journal of Clinical Investigation | 1999

Analysis of the human thymic perivascular space during aging

Kristina G. Flores; Jie Li; Gregory D. Sempowski; Barton F. Haynes; Laura P. Hale

The perivascular space (PVS) of human thymus increases in volume during aging as thymopoiesis declines. Understanding the composition of the PVS is therefore vital to understanding mechanisms of thymic atrophy. We have analyzed 87 normal and 31 myasthenia gravis (MG) thymus tissues from patients ranging in age from newborn to 78 years, using immunohistologic and molecular assays. We confirmed that although thymic epithelial space (TES) volume decreases progressively with age, thymopoiesis with active T-cell receptor gene rearrangement continued normally within the TES into late life. Hematopoietic cells present in the adult PVS include T cells, B cells, and monocytes. Eosinophils are prominent in PVS of infants 2 years of age or younger. In the normal adult and the MG thymus, the PVS includes mature single-positive (CD1a(-) and CD4(+) or CD8(+)) T lymphocytes that express CD45RO, and contains clusters of T cells expressing the TIA-1 cytotoxic granule antigen, suggesting a peripheral origin. PBMCs bind in vitro to MECA-79(+) high endothelial venules present in the PVS, suggesting a mechanism for the recruitment of peripheral cells to thymic PVS. Therefore, in both normal subjects and MG patients, thymic PVS may be a compartment of the peripheral immune system that is not directly involved in thymopoiesis.


Journal of Clinical Investigation | 1999

Analysis of the adult thymus in reconstitution of T lymphocytes in HIV-1 infection

Barton F. Haynes; Laura P. Hale; Kent J. Weinhold; Dhavalkumar D. Patel; Hua-Xin Liao; Peter B. Bressler; D M Jones; James F. Demarest; Kristin Gebhard-Mitchell; Ashley T. Haase; John A. Bartlett

Immunohistological analysis of the thymus in HIV infection. (a–d) Thymus from HIV-1+ patient no. 1 with no thymopoiesis. (e–h) Thymus from HIV-1+ patient no. 2 with areas of active thymopoiesis. (a) Hematoxylin and eosin stain of patient no. 1’s lymphoid thymus. ×13. (b) A similar area as in a, with thymic epithelium in immunohistological analysis reactive with antikeratin antibody (brown central areas). All keratin+ thymic epithelium (e) in the true thymus is collapsed (dark brown areas) and devoid of lymphocytes, with a surrounding infiltrate of blue mononuclear cells present in the thymic perivascular space (P). ×13. (c) Immunohistological stain of CD8+ T cells (brown cells; see arrows for examples) in the perivascular space (P) around a central empty thymic epithelial island (e). The dotted line surrounds thymic true epithelial thymus areas (e), and the short arrow points out a rare CD8+ T cell within the true epithelial thymus (e). ×66. (d) Many of the perivascular space (P) CD8+ cells are reactive with MAB TIA-1 (arrows) and therefore are mature effector cytotoxic T cells. ×66. e–h are from patient no. 2’s thymus. ×33. (e) Light microscopic view of patient no. 2’s thymus (hematoxylin and eosin stain with a Hassall’s body [h] in the thymus medulla). (f) Immunohistological analysis with antikeratin antibody, with areas of normal-appearing keratin+ thymic epithelium (brown areas) filled with lymphocytes (blue areas) intermingled with thymic epithelium (arrows). Most developing thymocytes are CD3+ T cells (arrows in g), many of which are normal CD1a+ cortical thymocytes (brown cells, arrows in h). A subset of these CD1a+, CD3+ immature thymocytes were actively dividing as determined by nuclear reactivity with MAB mib-1 (not shown). MAB, monoclonal antibody.


Journal of Clinical Investigation | 2015

Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation

Valerie A. Gerriets; Rigel J. Kishton; Amanda G. Nichols; Andrew N. Macintyre; Makoto Inoue; Olga Ilkayeva; Peter S. Winter; Xiaojing Liu; Bhavana Priyadharshini; Marta E. Slawinska; Lea Haeberli; Catherine Huck; Laurence A. Turka; Kris C. Wood; Laura P. Hale; Paul Smith; Martin A. Schneider; Nancie J. MacIver; Jason W. Locasale; Christopher B. Newgard; Mari L. Shinohara; Jeffrey C. Rathmell

Activation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.


Immunologic Research | 2000

The human thymus during aging

Barton F. Haynes; Gregory D. Sempowski; Alvin F. Wells; Laura P. Hale

The human thymusis required for establishment of a normal T cell repertoire in fetal development, as children born without a thymus (DiGeorge Syndrome) lack thymus-derived (T) and T cell immunity. While the function of the thymus in children for production of new T cells is clear, it has not been obvious that the adult thymus can produce significant numbers of new T cells. Until recently, no assays were available to directly evaluate postnatal thymic function. This paper reviews work on human thymic aging at Duke University School of Medicine and discusses the relevance of this work to devising new strategies for T cell immune reconstitution in man.

Collaboration


Dive into the Laura P. Hale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge