Laura Perkins
Erasmus University Rotterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Perkins.
Jacc-cardiovascular Imaging | 2010
Akira Murata; David Wallace-Bradley; Armando Tellez; Carlos L. Alviar; Michael S. Aboodi; Alexander Sheehy; Leslie Coleman; Laura Perkins; Gaku Nakazawa; Gary S. Mintz; Greg L. Kaluza; Renu Virmani; Juan F. Granada
OBJECTIVES This study aimed to evaluate the accuracy of optical coherence tomography (OCT) in analyzing the neointimal response to several drug-eluting stent (DES) types by comparing OCT images acquired in vivo with corresponding histological specimens using a nondiseased porcine injury model. BACKGROUND Optical coherence tomography is emerging as a promising endovascular imaging tool for the evaluation of neointimal response after DES implantation. METHODS A total of 84 stents were implanted-22 ML Vision (Abbott Vascular, Santa Clara, California), 22 Xience V (Abbott Vascular), 20 Endeavor (Medtronic, Minneapolis, Minnesota), and 20 Taxus Liberté (Boston Scientific, Natick, Massachusetts) stents-in normal porcine coronary arteries and were harvested at 28 (n=42) and 90 (n=42) days, with the different stent types equally distributed between the 2 follow-up periods. At termination, morphometric evaluation using OCT imaging was performed in all stented arteries. Histological morphometric analysis was performed and correlated with OCT. RESULTS A total of 622 OCT-histology matched frames acquired from all stent designs were analyzed. The luminal (13.7%) and stent (6.1%) areas were consistently larger by OCT compared with histology. The mean neointimal thickness was very similar between techniques (approximately 3.27% variation). There was a high correlation between OCT and histology for the evaluation of neointimal area (R2=0.804), luminal area (R2=0.825), and neointimal thickness (R2=0.789). Correlation for total stent area was poor (R2=0.352). Although the proportion of individual struts determined to be uncovered by OCT and histology was similar, there was significant variation in the estimation of strut coverage between OCT and histology when the neointimal thickness was between 20 and 80 microm. This variation converged for neointimal thicknesses between 80 and 100 microm. CONCLUSIONS Subtle differences in neointimal formation induced by current DES can be reproducibly analyzed in vivo by OCT. However, OCT measurement of stent area seems to have less correlation with histology.
Circulation-cardiovascular Interventions | 2014
Fumiyuki Otsuka; Erica Pacheco; Laura Perkins; Jennifer P. Lane; Qing Wang; Marika Kamberi; Michael Frie; Jin Wang; Kenichi Sakakura; Kazuyuki Yahagi; Elena Ladich; Richard Rapoza; Frank D. Kolodgie; Renu Virmani
Background—The Absorb everolimus-eluting bioresorbable vascular scaffold (Absorb) has shown promising clinical results; however, only limited preclinical data have been published. We sought to investigate detailed pathological responses to the Absorb versus XIENCE V (XV) in a porcine coronary model with duration of implant extending from 1 to 42 months. Methods and Results—A total of 335 devices (263 Absorb and 72 XV) were implanted in 2 or 3 main coronary arteries of 136 nonatherosclerotic swine and examined by light microscopy, scanning electron microscopy, pharmacokinetics, and gel permeation chromatography analyses at various time points. Vascular responses to Absorb and XV were largely comparable at all time points, with struts being sequestered within the neointima. Inflammation was mild to moderate (with absence of inflammation at 1 month) for both devices, although the scores were greater in Absorb at 6 to 36 months. Percent area stenosis was significantly greater in Absorb than XV at all time points except at 3 months. The extent of fibrin deposition was similar between Absorb and XV, which peaked at 1 month and decreased rapidly thereafter. Histomorphometry showed expansile remodeling of Absorb-implanted arteries starting after 12 months, and lumen area was significantly greater in Absorb than XV at 36 and 42 months. These changes correlated with dismantling of Absorb seen after 12 months. Gel permeation chromatography analysis confirmed that degradation of Absorb was complete by 36 months. Conclusions—Absorb demonstrates comparable long-term safety to XV in porcine coronary arteries with mild to moderate inflammation. Although Absorb was associated with greater percent stenosis relative to XV, expansile remodeling was observed after 12 months in Absorb with significantly greater lumen area at ≥36 months. Resorption is considered complete at 36 months.
Jacc-cardiovascular Interventions | 2014
Jennifer P. Lane; Laura Perkins; Alexander Sheehy; Erica Pacheco; Michael Frie; Byron Lambert; Richard Rapoza; Renu Virmani
OBJECTIVES Using intravascular ultrasound (IVUS) and histomorphometry, this study sought to evaluate the potential of nonatherosclerotic porcine coronary arteries to undergo progressive lumen gain and a return of pulsatility after implantation with an everolimus-eluting bioresorbable vascular scaffold (BVS). BACKGROUND Unique benefits such as lumen gain and restored vasomotion have been demonstrated clinically after treatment with BVS; however, a more rigorous demonstration of these benefits with a randomized clinical trial has not yet been conducted. METHODS Seventy nonatherosclerotic swine received 109 everolimus-eluting BVS and 70 everolimus-eluting metal stents randomized among the main coronary arteries. Arteries were evaluated in vivo by angiography and IVUS and post-mortem by histomorphometry at time points from 1 to 42 months. RESULTS From 1 to 6 months, both BVS- and everolimus-eluting metal stent-implanted arteries demonstrated stable lumen areas (LAs). From 12 months to 42 months, there was a progressive increase in the LA of arteries implanted with a BVS as assessed by histomorphometry and IVUS. This lumen gain in the implanted segment corresponded to an increase in the reference vessel LA. Normalization in the in-segment LA (LA:reference vessel LA) was observed qualitatively by angiography and quantitatively by IVUS. Additionally, BVS-implanted arteries demonstrated restored in-segment pulsatility on the basis of IVUS assessment of the differences in the mid-scaffold area between end-diastole to end-systole. CONCLUSIONS Starting at 12 months, BVS-implanted porcine coronary arteries underwent progressive lumen gain and showed restored pulsatility. These benefits demonstrated preclinically may translate into improvements in long-term clinical outcomes for patients treated with BVS compared with conventional drug-eluting stents.
Jacc-cardiovascular Interventions | 2015
Fumiyuki Otsuka; Qi Cheng; Kazuyuki Yahagi; Eduardo Acampado; Alexander Sheehy; Saami K. Yazdani; Kenichi Sakakura; Kristina Euller; Laura Perkins; Frank D. Kolodgie; Renu Virmani; Michael Joner
OBJECTIVES This study sought to evaluate whether the permanent fluoropolymer-coated Xience Xpedition everolimus-eluting stent (Xience-EES) exhibits lower acute thrombogenicity compared with contemporary drug-eluting stents (DES) with biodegradable polymer coatings in an acute swine shunt model. BACKGROUND Previous pre-clinical and clinical experience suggests that several factors may influence the predisposition for acute thrombus formation of polymer-coated DES, including stent design and the polymer coating technology. It remains unclear whether relevant differences exist with respect to acute thrombogenicity, particularly between current commercial stent designs using permanent polymers and those using biodegradable polymers. METHODS An ex vivo carotid to jugular arteriovenous porcine shunt model involving a test circuit of 3 in-line stents, was used to test acute thrombogenicity, where Xience-EES (n = 24) was compared with 4 CE-marked DES with biodegradable polymer coatings (BioMatrix Flex, Synergy, Nobori, and Orsiro [n = 6 each]). After 1 h of circulation, platelet aggregation in whole mount stents was evaluated by confocal microscopy with immunofluorescent staining against dual platelet markers (CD61/CD42b) along with scanning electron microscopy. RESULTS Xience-EES showed the least percentage of thrombus-occupied area as compared with the biodegradable polymer-coated DES, with a significant difference compared with BioMatrix Flex and Synergy (mean differences: [BioMatrix Flex: 15.54, 95% confidence interval [CI]: 11.34 to 19.75, p < 0.001; Synergy: 8.64, 95% CI: 4.43 to 12.84, p < 0.001; Nobori: 4.22, 95% CI: -0.06 to 8.49, p = 0.055; Orsiro: 2.95, 95% CI: -1.26 to 7.15, p = 0.286). The number of cell nuclei on strut surfaces was also the least in Xience-EES, with a significant difference relative to BioMatrix Flex, Nobori, and Orsiro (mean ratios: BioMatrix Flex: 4.73, 95% CI: 2.46 to 9.08, p < 0.001; Synergy: 1.44, 95% CI: 0.75 to 2.76, p = 0.51; Nobori: 5.97, 95% CI: 3.11 to 11.44, p < 0.001; Orsiro: 5.16, 95% CI: 2.69 to 9.91, p < 0.001). CONCLUSIONS Xience-EESs overall design confers acute thromboresistance relative to contemporary DES with biodegradable coatings, with less platelet aggregation versus BioMatrix Flex and Synergy, and less inflammatory cell attachment versus BioMatrix Flex, Nobori, and Orsiro, in an ex vivo swine shunt model, which lends support to reported clinical findings of lower early stent thrombosis.
Eurointervention | 2014
Marc Vorpahl; Masataka Nakano; Laura Perkins; Fumiyuki Otsuka; Russell S. Jones; Eduardo Acampado; Jennifer P. Lane; Richard Rapoza; Frank D. Kolodgie; Renu Virmani
AIMS We aimed to investigate a fully bioresorbable poly-l-lactide (PLLA) scaffold to assess vascular remodelling in comparison to a permanent polymeric metal DES. METHODS AND RESULTS Twenty-five New Zealand white rabbits received an Absorb bioresorbable vascular scaffold (BVS, 1.0 and 1.1) or a CYPHER sirolimus-eluting stent (SES) in the iliac arteries. Twelve arteries were harvested at one month for scanning electron microscopy (SEM) analysis (BVS 1.1). The other implanted (BVS 1.0) arteries (n=32) were explanted at three, six and 36 months for light microscopic analysis. Re-endothelialisation assessed at one month was incomplete in both BVS and SES by SEM, with a trend towards greater coverage in SES (endothelialisation above strut: 32.2% vs. 60.6%, p=0.10). However, light microscopic analysis at later time points revealed greater endothelial coverage in BVS than in SES at 36 months (100.0% vs. 93.3%, p=0.05). Inflammation scores were comparable between arteries implanted with BVS and SES at three months (1.1 vs. 1.1, p=0.99), which decreased over time in the BVS implanted arteries (36 months: 0.0 vs. 0.2, p=0.05). At 36 months, BVS were completely resorbed, and resorption sites were replaced by connective tissue. CONCLUSIONS BVS in the rabbit iliac artery model demonstrated ongoing vascular healing at three and six months, and complete vessel restoration, re-endothelialisation and no to minimal vascular inflammation at 36 months.
Jacc-cardiovascular Interventions | 2016
Shimpei Nakatani; Yuki Ishibashi; Yohei Sotomi; Laura Perkins; Jeroen Eggermont; Maik J. Grundeken; Jouke Dijkstra; Richard Rapoza; Renu Virmani; Patrick W. Serruys; Yoshinobu Onuma
OBJECTIVES The aim of the present study was to investigate the relationship between the integration process and luminal enlargement with the support of light intensity (LI) analysis on optical coherence tomography (OCT), echogenicity analysis on intravascular ultrasound, and histology up to 4 years in a porcine model. BACKGROUND In pre-clinical and clinical studies, late luminal enlargement has been demonstrated at long-term follow-up after everolimus-eluting poly-l-lactic acid coronary scaffold implantation. However, the time relationship and the mechanistic association with the integration process are still unclear. METHODS Seventy-three nonatherosclerotic swine that received 112 Absorb scaffolds were evaluated in vivo by OCT, intravascular ultrasound, and post-mortem histomorphometry at 3, 6, 12, 18, 24, 30, 36, 42, and 48 months. RESULTS The normalized LI, which is the signal densitometry on OCT of a polymeric strut core normalized by the vicinal neointima, was able to differentiate the degree of connective tissue infiltration inside the strut cores. Luminal enlargement was a biphasic process at 6 to 18 months and at 30 to 42 months. The latter phase occurred with vessel wall thinning and coincided with the advance integration process demonstrated by the steep change in normalized LI (0.26 [interquartile range (IQR): 0.20 to 0.32] at 30 months versus 0.68 [IQR: 0.58 to 0.83] at 42 months, p < 0.001). CONCLUSIONS In this pre-clinical model, late luminal enlargement relates to strut integration into the arterial wall. Quantitative LI analysis on OCT could be used as a surrogate method for monitoring the integration process of poly-l-lactic acid scaffolds, which could provide insight and understanding on the imaging-related characteristics of the bioresorption process of polylactide scaffolds in human.
Circulation | 2014
Shimpei Nakatani; Yoshinobu Onuma; Yuki Ishibashi; Jeroen Eggermont; Yao-Jun Zhang; Carlos M. Campos; Yun Kyeong Cho; Shengnan Liu; Jouke Dijkstra; Johan H. C. Reiber; Laura Perkins; Alexander Sheehy; Susan Veldhof; Richard Rapoza; Gerrit-Anne van Es; Hector M. Garcia-Garcia; Robert-Jan van Geuns; Patrick W. Serruys; Stephan Windecker
BACKGROUND Quantitative light intensity analysis of the strut core by optical coherence tomography (OCT) may enable assessment of changes in the light reflectivity of the bioresorbable polymeric scaffold from polymer to provisional matrix and connective tissues, with full disappearance and integration of the scaffold into the vessel wall. The aim of this report was to describe the methodology and to apply it to serial human OCT images post procedure and at 6, 12, 24 and 36 months in the ABSORB cohort B trial. METHODS AND RESULTS In serial frequency-domain OCT pullbacks, corresponding struts at different time points were identified by 3-dimensional foldout view. The peak and median values of light intensity were measured in the strut core by dedicated software. A total of 303 corresponding struts were serially analyzed at 3 time points. In the sequential analysis, peak light intensity increased gradually in the first 24 months after implantation and reached a plateau (relative difference with respect to baseline [%Dif]: 61.4% at 12 months, 115.0% at 24 months, 110.7% at 36 months), while the median intensity kept increasing at 36 months (%Dif: 14.3% at 12 months, 75.0% at 24 months, 93.1% at 36 months). CONCLUSIONS Quantitative light intensity analysis by OCT was capable of detecting subtle changes in the bioresorbable strut appearance over time, and could be used to monitor the bioresorption and integration process of polylactide struts.
Circulation | 2014
Shimpei Nakatani; Yoshinobu Onuma; Yuki Ishibashi; Jeroen Eggermont; Yao-Jun Zhang; Carlos M. Campos; Yun Kyeong Cho; Shengnan Liu; Jouke Dijkstra; Johan H. C. Reiber; Laura Perkins; Alexander Sheehy; Susan Veldhof; Richard Rapoza; Gerrit-Anne van Es; Hector M. Garcia-Garcia; Robert-Jan van Geuns; Patrick W. Serruys
BACKGROUND Quantitative light intensity analysis of the strut core by optical coherence tomography (OCT) may enable assessment of changes in the light reflectivity of the bioresorbable polymeric scaffold from polymer to provisional matrix and connective tissues, with full disappearance and integration of the scaffold into the vessel wall. The aim of this report was to describe the methodology and to apply it to serial human OCT images post procedure and at 6, 12, 24 and 36 months in the ABSORB cohort B trial. METHODS AND RESULTS In serial frequency-domain OCT pullbacks, corresponding struts at different time points were identified by 3-dimensional foldout view. The peak and median values of light intensity were measured in the strut core by dedicated software. A total of 303 corresponding struts were serially analyzed at 3 time points. In the sequential analysis, peak light intensity increased gradually in the first 24 months after implantation and reached a plateau (relative difference with respect to baseline [%Dif]: 61.4% at 12 months, 115.0% at 24 months, 110.7% at 36 months), while the median intensity kept increasing at 36 months (%Dif: 14.3% at 12 months, 75.0% at 24 months, 93.1% at 36 months). CONCLUSIONS Quantitative light intensity analysis by OCT was capable of detecting subtle changes in the bioresorbable strut appearance over time, and could be used to monitor the bioresorption and integration process of polylactide struts.
Catheterization and Cardiovascular Interventions | 2016
Laura Perkins; Mary Beth Kossuth; Julia C. Fox; Richard Rapoza
Bioresorbable scaffolds (BRS) combine attributes of the preceding generations of percutaneous coronary intervention (PCI) devices with new technologies to result in a novel therapy promoted as being the fourth generation of PCI. By providing mechanical support and drug elution to suppress restenosis, BRS initially function similarly to drug eluting stents. Thereafter, through their degradation, BRS undergo a decline in radial strength, allowing a gradual transition of mechanical function from the scaffold back to the artery in order to provide long term effectiveness similar to balloon angioplasty. The principles of operation of BRS, whether of polymeric or metallic composition, follow three phases of functionality reflective of differing physiological requirements over time: revascularization, restoration, and resorption. In this review, these three fundamental performance phases and the metrics for the nonclinical evaluation of BRS, including both bench and preclinical testing, are discussed.
Journal of Biomedical Materials Research Part B | 2018
Marika Kamberi; David Pinson; Stephen D. Pacetti; Laura Perkins; Syed Hossainy; Hiroyoshi Mori; Richard Rapoza; Frank D. Kolodgie; Renu Virmani
The polymers poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and poly(n-butyl methacrylate) (PBMA) are employed in manufacturing the XIENCE family of coronary stents. PBMA serves as a primer and adheres to both the stent and the drug coating. PVDF-HFP is employed in the drug matrix layer to hold the drug everolimus on the stent and control its release. Chemical stability of the polymers of XIENCE stents in the in-vivo environment was evaluated by pyrolysis-gas chromatography with mass spectrometry (Py-GC/MS) detection. For this evaluation, XIENCE stents explanted from porcine coronary arteries and from human coronary artery specimens at autopsy after 2-4 and 5-7 years of implantation, respectively, were compared to freshly manufactured XIENCE stents (controls). The comparison of pyrograms of explanted stent samples and controls showed identical fragmentation fingerprints of polymers, indicating that PVDF-HFP and PBMA maintained their chemical integrity after multiple years of XIENCE coronary stent implantation. The findings of the present study demonstrate the chemical stability of PVDF-HFP and PBMA polymers of the XIENCE family of coronary stents in the in-vivo environment, and constitute a further proof of the suitability of PVDF-HFP as a drug carrier for the drug eluting stent applications.