Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Politi is active.

Publication


Featured researches published by Laura Politi.


Molecular and Cellular Endocrinology | 2007

Cadmium induces mitogenic signaling in breast cancer cell by an ERα-dependent mechanism

Marina Brama; Lucio Gnessi; Sabrina Basciani; Nicola Cerulli; Laura Politi; Giovanni Spera; Stefania Mariani; Sara Cherubini; Anna Scotto d’Abusco; Roberto Scandurra; Silvia Migliaccio

Breast cancer (BC) is linked to estrogen exposure. Estradiol (E2) stimulates BC cells proliferation by binding the estrogen receptor (ER). Hormone-related cancers have been linked to estrogenic environmental contaminants. Cadmium (Cd) a toxic pollutant, acts as estrogens in BC cells. Purpose of our study was to evaluate whether Cd regulates MCF-7 cell proliferation by activating ERK1/2, Akt and PDGFRalpha kinases. Cd increased cell proliferation and the ER-antagonist ICI 182,780 blunted it. To characterize an ER-dependent mechanism, ERalpha/beta expression was evaluated. Cd decreased ERalpha expression, but not ERbeta. Cd also increased ERK1/2, Akt and PDGFRalpha phosphorylation while ICI blocked it. Since stimulation of phosphorylation was slower than expected, c-fos and c-jun proto-oncogenes, and PDGFA were analyzed. Cd rapidly increased c-jun, c-fos and PDGFA expression. Cells were also co-incubated with the Cd and specific kinases inhibitors, which blocked the Cd-stimulated proliferation. In conclusion, our results indicate that Cd increases BC cell proliferation in vitro by stimulating Akt, ERK1/2 and PDGFRalpha kinases activity likely by activating c-fos, c-jun and PDGFA by an ERalpha-dependent mechanism.


Biochimie | 1998

PROTEIN THERMOSTABILITY IN EXTREMOPHILES

Roberto Scandurra; Valerio Consalvi; Roberta Chiaraluce; Laura Politi; Paul C. Engel

Thermostability of a protein is a property which cannot be attributed to the presence of a particular amino acid or to a post synthetic modification. Thermostability seems to be a property acquired by a protein through many small structural modifications obtained with the exchange of some amino acids and the modulation of the canonical forces found in all proteins such as electrostatic (hydrogen bonds and ion-pairs) and hydrophobic interactions. Proteins produced by thermo and hyperthermophilic microorganisms, growing between 45 and 110 degrees C are in general more resistant to thermal and chemical denaturation than their mesophilic counterparts. The observed structural resistance may reflect a restriction on the flexibility of these proteins, which, while allowing them to be functionally competent at elevated temperatures, renders them unusually rigid at mesophilic temperatures (10-45 degrees C). The increased rigidity at mesophilic temperatures may find a structural determinant in increased compactness. In thermophilic proteins a number of amino acids are often exchanged. These exchanges with some strategic placement of proline in beta-turns give rise to a stabilization of the protein. Mutagenesis experiments have confirmed this statement. From the comparative analysis of the X-ray structures available for several families of proteins, including at least one thermophilic structure in each case, it appears that thermal stabilization is accompanied by an increase in hydrogen bonds and salt bridges. Thermostability appears also related to a better packing within buried regions. Despite these generalisations, no universal rules can be found in these proteins to achieve thermostability.


Rheumatology International | 2014

The inflammatory circuitry of miR-149 as a pathological mechanism in osteoarthritis

Paolo Maria Santini; Laura Politi; Pietro Dalla Vedova; Roberto Scandurra; Anna Scotto d’Abusco

Osteoarthritis (OA) is a multifactorial degenerative pathology, whose progression is exacerbated by pro-inflammatory cytokines signaling. Among the changes triggered in chondrocytes during inflammation, modified expression of tiny epigenetic regulators as microRNAs was shown having deleterious implications for articular cartilage. Aim of the present study was to identify differentially expressed microRNAs in human OA cartilage and to determine their relevance to pathological progression. An OA model based on inflammatory stimulation of a chondrocytic human cell line was used to analyze microRNAs deregulation, and results revealed miR-149 severely down-regulated by IL1β and TNFα. Real-time PCR analysis of miR-149 was exerted also in human primary chondrocytes isolated from cartilage of OA donors and postmortem from subjects with no known history of OA, confirming down-regulation in osteoarthritis. Moving on a functional study, miR-149 regulatory effect on tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL1β) and interleukin 6 (IL6) 3′UTRs was evaluated by luciferase assays, and chondrocytes production of TNFα upon miR-149 transfection was measured by enzyme-linked immuno sorbent assay. We found that miR-149 is down-regulated in OA chondrocytes, and this decrease seems to be correlated to increased expression of pro-inflammatory cytokines such as TNFα, IL1β and IL6. OA is a multifactorial disease and we think that our results give new insights for understanding the complex mechanisms of osteoarthritic pathogenesis.


Arthritis Research & Therapy | 2007

Glucosamine affects intracellular signalling through inhibition of mitogen-activated protein kinase phosphorylation in human chondrocytes

Anna Scotto d'Abusco; Valentina Calamia; Claudia Cicione; Brunella Grigolo; Laura Politi; Roberto Scandurra

The aim of this study was to determine the effects of glucosamine on matrix metalloprotease (MMP) production, on mitogen-activated protein kinase (MAPK) phosphorylation, and on activator protein (AP)-1 transcription factor activation in human chondrocytes. The human immortalized cell line lbpva55 and healthy human chondrocytes (obtained from healthy donors) were subjected to challenge with 10 ng/ml IL-1β after pretreatment with 2.5 or 10 mmol/l glucosamine. MMP mRNA expression levels were evaluated using quantitative real-time PCR, and MMP protein production levels were evaluated in the culture supernatant using ELISA. MAPK phosphorylation was evaluated using Western blotting. AP-1 transcription factor activation was evaluated by measuring AP-1 DNA-binding activity. After IL-1β stimulation, levels of MMP-1, MMP-3 and MMP-13 production were markedly increased. Treatment with 2.5 and 10 mmol/l glucosamine reduced expression of these metalloproteases. MMP expression is regulated by transcription factors such as the AP-1 complex, which is activated by phosphorylated MAPKs. IL-1β stimulated phosphorylation of c-jun amino-terminal kinase, p38 MAPK and extracellular signal-regulated kinase-1/2. Glucosamine inhibited c-jun amino-terminal kinase and p38 phosphorylation, and consequently c-jun binding activity. These findings demonstrate, for the first time, that glucosamine inhibits IL-1β-stimulated MMP production in human chondrocytes by affecting MAPK phosphorylation.


Journal of Protein Chemistry | 1994

THE AMINO ACID SEQUENCE OF GLUTAMATE DEHYDROGENASE FROM PYROCOCCUS FURIOSUS, A HYPERTHERMOPHILIC ARCHAEBACTERIUM

Bruno Maras; Sofia Valiante; Roberta Chiaraluce; Valerio Consalvi; Laura Politi; Mario De Rosa; Francesco Bossa; Roberto Scandurra; Donatella Barra

The complete amino acid sequence of glutamate dehydrogenase from the archaebacteriumPyrococcus furiosus has been determined. The sequence was reconstructed by automated sequence analysis of peptides obtained after cleavage with cyanogen bromide, Asp-N endoproteinase, trypsin, or pepsin. The enzyme subunit is composed of 420 amino acid residues yielding a molecular mass of 47,122 D. In the recently determined primary structure of glutamate dehydrogenase from another thermophilic archaebacterium,Sulfolobus solfataricus, the presence of some methylated lysines was detected and the possible role of this posttranslational modification in enhancing the thermostability of the enzyme was discussed (Maras, B., Consalvi, V., Chiaraluce, R., Politi, L., De Rosa, M., Bossa, F., Scandurra, R., and Barra, D. (1992),Eur. J. Biochem.203, 81–87). In the primary structure reported here, such posttranslational modification has not been found, indicating that the role of lysine methylation should be revisited. Comparison of the sequence of glutamate dehydrogenase fromPyrococcus furiosus with that ofS. solfataricus shows a 43.7% similarity, thus indicating a common evolutionary pathway.


Rheumatology International | 2013

l-Carnitine enhances extracellular matrix synthesis in human primary chondrocytes

Daniela Stoppoloni; Laura Politi; Pietro Dalla Vedova; Masa Messano; Aleardo Koverech; Roberto Scandurra; Anna Scotto d’Abusco

Osteoarthritis (OA) is one of the most common degenerative joint disease for which there is no cure. It is treated mainly with non-steroidal anti-inflammatory drugs to control the symptoms and some supplements, such as glucosamine and chondroitin sulphate in order to obtain structure-modifying effects. Aim of this study is to investigate the effects of l-carnitine, a molecule with a role in cellular energy metabolism, on extracellular matrix synthesis in human primary chondrocytes (HPCs). Dose-dependent effect of l-carnitine on cartilage matrix production, cell proliferation and ATP synthesis was examined by incubating HPCs with various amounts of molecule in monolayer (2D) and in hydromatrix scaffold (3D). l-Carnitine affected extracellular matrix synthesis in 3D in a dose-dependent manner; moreover, l-carnitine was very effective to stimulate cell proliferation and to induce ATP synthesis, mainly in 3D culture condition. In conclusion, l-carnitine enhances cartilage matrix glycosaminoglycan component production and cell proliferation, suggesting that this molecule could be useful in the treatment of pathologies where extracellular matrix is degraded, such as OA. To our knowledge, this is the first study where the effects of l-carnitine are evaluated in HPCs.


Arthritis Research & Therapy | 2010

A peptidyl-glucosamine derivative affects IKKα kinase activity in human chondrocytes

Anna Scotto d'Abusco; Laura Politi; Cesare Giordano; Roberto Scandurra

IntroductionNuclear factor-κB (NF-κB) transcription factor regulates several cell signaling pathways, such as differentiation and inflammation, which are both altered in osteoarthritis. Inhibitor κB kinase (IKK)α and IKKβ are kinases involved in the activation of the NF-κB transcription factor. The aim of the present study was to determine the effects of glucosamine (GlcN), which is administered in the treatment of osteoarthritis, and of its 2-(N-Acetyl)-L-phenylalanylamido-2-deoxy-β-D-glucose (NAPA) derivative on IKK kinases and, consequently, on NF-κB activation in human chondrocytes.MethodsThe human chondrosarcoma cell line HTB-94 and human primary chondrocytes were stimulated with tumor necrosis factor (TNF)α after pre-treatment with GlcN or NAPA. Gene mRNA expression level was evaluated by real-time PCR. Inhibitor κB protein (IκB)α phosphorylation and p65 nuclear re-localization were analyzed by Western blotting; IKKα nuclear re-localization was also investigated by immunocytochemistry and Western blotting. IKK kinase activity was studied by in vitro kinase assay.ResultsAfter TNFα stimulation, the mRNA expression level of some of the genes under NF-κB control, such as interleukin (IL)-6 and IL-8, increased, while treatment with GlcN and NAPA reverted the effect. We investigated the possibility that GlcN and NAPA inhibit IKK kinase activity and found that NAPA inhibits the IKKα kinase activity, whereas GlcN does not. Interestingly, both GlcN and NAPA inhibit IKKα nuclear re-localization.ConclusionsOur results demonstrate that glucosamine and its peptidyl derivative can interfere with NF-κB signaling pathway by inhibiting IKKα activity in human chondrocytes. However, the mechanism of action of the two molecules is not completely overlapping. While NAPA can both specifically inhibit the IKKα kinase activity and IKKα nuclear re-localization, GlcN only acts on IKKα nuclear re-localization.


Rheumatology International | 2008

Effects of intra-articular administration of glucosamine and a peptidyl-glucosamine derivative in a rabbit model of experimental osteoarthritis: a pilot study.

Anna Scotto d’Abusco; Alessandro Corsi; Maria Grazia Grillo; Claudia Cicione; Valentina Calamia; Gianluca Panzini; Anna Sansone; Cesare Giordano; Laura Politi; Roberto Scandurra

The aim of this pilot study was to analyze the effects of glucosamine (GlcN) and its N-acetyl-phenylalanine derivative (NAPA) in Vitamin A model of osteoarthritis (OA) in rabbits. GlcN or NAPA or saline solution was intra-articularly administered in rabbit OA knees. Histological analysis revealed that treatment with GlcN or NAPA was associated with more homogeneous chondrocyte cellularity, absence of fissures and fragmentation and more intense staining of the matrix with Alcian Blue compared to the articular surfaces of the knees treated with saline solution. Comparative in vitro study performed on rabbit primary chondrocytes revealed that GlcN and NAPA were also able to counteract the IL-1β-upregulation of genes coding for metalloproteases and inflammatory cytokines. Our preliminary in vivo and in vitro studies suggest that GlcN and NAPA could play a disease-modifying protective role in OA by an anti-catabolic effect and an anti-inflammatory activity on chondrocytes.


Osteoarthritis and Cartilage | 2015

Effect of glucosamine and its peptidyl-derivative on the production of extracellular matrix components by human primary chondrocytes

D. Stoppoloni; Laura Politi; Martina Leopizzi; S. Gaetani; Raffaella Guazzo; Sabrina Basciani; O. Moreschini; M. De Santi; Roberto Scandurra; A. Scotto d'Abusco

OBJECTIVE Aim of this study is to investigate the effects of Glucosamine (GlcN) and its peptidyl-derivative, 2-(N-Acetyl)-L-phenylalanylamido-2-deoxy-β-D-glucose (NAPA), on extracellular matrix (ECM) synthesis in human primary chondrocytes (HPCs). METHODS Dose-dependent effect of GlcN and NAPA on Glycosaminoglycan (GAG), Collagen type II (Col2) and Small Leucine-Rich Proteoglycans (SLRPs) was examined by incubating HPCs, cultured in micromasses (3D), with various amounts of two molecules, administered as either GlcN alone or NAPA alone or GlcN plus NAPA (G + N). Immunohystochemical and immunofluorescent staining and biochemical analysis were used to determine the impact of the two molecules on ECM production. Gene expression analysis was performed by TaqMan Real-Time Polymerase Chain Reaction (PCR) assays. RESULTS The lowest concentration to which GlcN and NAPA were able to affect ECM synthesis was 1 mM. Both molecules administered alone and as G + N stimulated GAGs and SLRPs synthesis at different extent, NAPA and mainly G + N stimulated Col2 production, whereas GlcN was not effective. Both molecules were able to induce Insulin Growth Factor-I (IGF-I) and to stimulate SOX-9, whereas NAPA and G + N were able to up-regulate both Hyaluronic Acid Synthase-2 and Hyaluronic acid. Very interesting is the synergistic effect observed when chondrocyte micromasses were treated with G + N. CONCLUSIONS The observed anabolic effects and optimal concentrations of GlcN and NAPA, in addition to beneficial effects on other cellular pathways, previously reported, such as the inhibition of IKKα, could be useful to formulate new cartilage repair strategies.


Biochimica et Biophysica Acta | 1993

Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobussolfataricus: studies on thermal and guanidine-dependent inactivation

Valerio Consalvi; Roberta Chiaraluce; Laura Politi; Alessandra Pasquo; Mario De Rosa; Roberto Scandurra

The hexameric NAD(P)-dependent glutamate dehydrogenase isolated from the thermoacidophilic archaebacterium Sulfolobus solfataricus shows a remarkable thermal stability which is strictly dependent on protein concentration (half-life at 95 degrees C is 0.25 h and 0.5 h at 0.4 and 0.8 mg/ml, respectively). Temperature-dependent inactivation of the enzyme is apparently irreversible; this process is accompanied by a progressive increase in hydrophobic surface area which leads to protein precipitation. 3 M GdnHCl increases the half-life of the enzyme at 90 degrees C and 0.2 mg/ml 6-fold. The hexamer is the only soluble molecular species revealed by glutaraldehyde fixation after thermal inactivation. Lyotropic salts strongly affect the enzyme thermal stability: the half-life at 90 degrees C and 0.2 mg/ml protein concentration increases more than 6-fold in the presence of 0.4 M Na2SO4 and decreases 4-fold in the presence of 0.4 M NaSCN. The maximum protein thermal stability is observed around the isoelectric pH, between pH 5.2 and pH 6.8. Guanidine-dependent inactivation of the enzyme at 20 degrees C is irreversible above 1.5 M GdnHCl. The decline in percentage of reactivation closely parallels the structural changes detected by fluorescence and the loss of hexameric structure accompanied by the dissociation to monomers, as indicated by glutaraldehyde fixation.

Collaboration


Dive into the Laura Politi's collaboration.

Top Co-Authors

Avatar

Roberto Scandurra

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Valerio Consalvi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Roberta Chiaraluce

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario De Rosa

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gianluca Panzini

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Nicola Cerulli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Valentina Calamia

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Cesare Giordano

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge