Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura R. Arriaga is active.

Publication


Featured researches published by Laura R. Arriaga.


Small | 2014

Ultrathin Shell Double Emulsion Templated Giant Unilamellar Lipid Vesicles with Controlled Microdomain Formation

Laura R. Arriaga; Sujit S. Datta; Shin-Hyun Kim; Esther Amstad; Thomas E. Kodger; Francisco Monroy; David A. Weitz

A microfluidic approach is reported for the high-throughput, continuous production of giant unilamellar vesicles (GUVs) using water-in-oil-in-water double emulsion drops as templates. Importantly, these emulsion drops have ultrathin shells; this minimizes the amount of residual solvent that remains trapped within the GUV membrane, overcoming a major limitation of typical microfluidic approaches for GUV fabrication. This approach enables the formation of microdomains, characterized by different lipid compositions and structures within the GUV membranes. This work therefore demonstrates a straightforward and versatile approach to GUV fabrication with precise control over the GUV size, lipid composition and the formation of microdomains within the GUV membrane.


Biophysical Journal | 2009

Stiffening Effect of Cholesterol on Disordered Lipid Phases: A Combined Neutron Spin Echo + Dynamic Light Scattering Analysis of the Bending Elasticity of Large Unilamellar Vesicles

Laura R. Arriaga; Iván López-Montero; Francisco Monroy; Guillermo Orts-Gil; B. Farago; Thomas Hellweg

In this study, the center-of-mass diffusion and shape fluctuations of large unilamellar 1-palmitoyl-2-oleyl-sn-glycero-phosphatidylcholine vesicles prepared by extrusion are studied by means of neutron spin echo in combination with dynamic light scattering. The intermediate scattering functions were measured for several different values of the momentum transfer, q, and for different cholesterol contents in the membrane. The combined analysis of neutron spin echo and dynamic light scattering data allows calculation of the bending elastic constant, kappa, of the vesicle bilayer. A stiffening effect monitored as an increase of kappa with increasing cholesterol molar ratio is demonstrated by these measurements.


Soft Matter | 2011

On the origin of the stability of foams made from catanionic surfactant mixtures

Dharmesh Varade; David Carriere; Laura R. Arriaga; Anne-Laure Fameau; Emmanuelle Rio; Dominique Langevin; Wiebke Drenckhan

Using mixtures of the anionic myristic acid (C13COOH) and the cationic cetyl trimethylammonium chloride (C16TA+Cl−) in aqueous solutions at a 2:1 ratio, we show that the outstanding stability of foams generated from sufficiently concentrated “catanionic” surfactant mixtures can be explained by a synergy effect between two fundamentally different mechanisms. Applying a multi-scale approach, in which we link static and dynamic properties of the bulk solutions, isolated gas/liquid interfaces, thin liquid films and foams, we identify these two mechanisms to be as follows: firstly, cationic mixtures create tightly packed surfactant layers at gas/liquid interfaces, which are strongly viscoelastic and also confer high disjoining pressures when two interfaces are approaching each other to form a thin liquid film. Foams created with such kind of interfaces tend to be extremely stable against coalescence (film rupture) and coarsening (gas exchange). However, typical time scales to cover the interfaces are much longer than typical foaming times. This is why a second mechanism plays a key role, which is due to the presence of micron-sized catanionic vesicles in the foaming solution. The bilayers of these vesicles are in a gel-like state, therefore leading to nearly indestructible objects which act like elastic micro-spheres. At sufficiently high concentrations, these vesicles jam in the presence of the confinement between bubbles, slowing down the drainage of liquid during the initial foaming process and therefore providing time for the interfaces to be covered. Furthermore, the tightly packed vesicles strongly reduce bubble coalescence and gas transfer between bubbles.


Soft Matter | 2012

On the long-term stability of foams stabilised by mixtures of nano-particles and oppositely charged short chain surfactants

Laura R. Arriaga; Wiebke Drenckhan; Anniina Salonen; Jhonny A. Rodrigues; Ramón Íñiguez-Palomares; Emmanuelle Rio; Dominique Langevin

We have studied the foaming properties of aqueous dispersions containing mixtures of silica nano-particles (Ludox TMA) and a short-chain amphiphile (n-amylamine). By combining standard hand shaking methods and microfluidic techniques we show that stable foams can be obtained at amine concentrations above approximately 0.5 wt%, which appears to be a critical concentration for cooperative association between particles and amine. In contrast to foams stabilised solely by nano-particles, these foams suffer from slow coarsening due to gas exchange between bubbles. “Superstable” foams for which coarsening is inhibited can only be produced at sufficiently high particle and amine concentrations (typically 10 and 3 wt%, respectively) for which the dispersions also gel in the continuous phase of the foam. We combine investigations of the static and dynamic properties of the particle-laden air–water interfaces in an attempt to elucidate some of the key mechanisms which control the observed behaviour.


Lab on a Chip | 2014

Microfluidic assembly of multistage porous silicon–lipid vesicles for controlled drug release

Bárbara Herranz-Blanco; Laura R. Arriaga; Ermei Mäkilä; Alexandra Correia; Neha Shrestha; Sabiruddin Mirza; David A. Weitz; Jarno Salonen; Jouni Hirvonen; Hélder A. Santos

A reliable microfluidic platform for the generation of stable and monodisperse multistage drug delivery systems is reported. A glass-capillary flow-focusing droplet generation device was used to encapsulate thermally hydrocarbonized porous silicon (PSi) microparticles into the aqueous cores of double emulsion drops, yielding the formation of a multistage PSi-lipid vesicle. This composite system enables a large loading capacity for hydrophobic drugs.


ACS Applied Materials & Interfaces | 2013

Microfluidic Templated Mesoporous Silicon–Solid Lipid Microcomposites for Sustained Drug Delivery

Dongfei Liu; Bárbara Herranz-Blanco; Ermei Mäkilä; Laura R. Arriaga; Sabiruddin Mirza; David A. Weitz; Niklas Sandler; Jarno Salonen; Jouni Hirvonen; Hélder A. Santos

A major challenge for a drug-delivery system is to engineer stable drug carriers with excellent biocompatibility, monodisperse size, and controllable release profiles. In this study, we used a microfluidic technique to encapsulate thermally hydrocarbonized porous silicon (THCPSi) microparticles within solid lipid microparticles (SLMs) to overcome the drawbacks accompanied by THCPSi microparticles. Formulation and process factors, such as lipid matrixes, organic solvents, emulsifiers, and methods to evaporate the organic solvents, were all evaluated and optimized to prepare monodisperse stable SLMs. FTIR analysis together with confocal images showed the clear deposition of THCPSi microparticles inside the monodisperse SLM matrix. The formation of monodisperse THCPSi-solid lipid microcomposites (THCPSi-SLMCs) not only altered the surface hydrophobicity and morphology of THCPSi microparticles but also remarkably enhanced their cytocompatibility with intestinal (Caco-2 and HT-29) cancer cells. Regardless of the solubility of the loaded therapeutics (aqueous insoluble, fenofibrate and furosemide; aqueous soluble, methotrexate and ranitidine) and the pH values of the release media (1.2, 5.0, and 7.4), the time for the release of 50% of the payloads from THCPSi-SLMC was at least 1.3 times longer than that from the THCPSi microparticles. The sustained release of both water-soluble and -insoluble drugs together with a reduced burst-release effect from monodisperse THCPSi-SLMC was achieved, indicating the successful encapsulation of THCPSi microparticles into the SLM matrix. The fabricated THCPSi-SLMCs exhibited monodisperse spherical morphology, enhanced cytocompatibility, and prolonged both water-soluble and -insoluble drug release, which makes it an attractive controllable drug-delivery platform.


Lab on a Chip | 2016

Robust scalable high throughput production of monodisperse drops

Esther Amstad; M. Chemama; Maximilian L. Eggersdorfer; Laura R. Arriaga; Michael P. Brenner; David A. Weitz

Monodisperse drops with diameters between 20 μm and 200 μm can be used to produce particles or capsules for many applications such as for cosmetics, food, and biotechnology. Drops composed of low viscosity fluids can be conveniently made using microfluidic devices. However, the throughput of microfluidic devices is limited and scale-up, achieved by increasing the number of devices run in parallel, can compromise the narrow drop-size distribution. In this paper, we present a microfluidic device, the millipede device, which forms drops through a static instability such that the fluid volume that is pinched off is the same every time a drop forms. As a result, the drops are highly monodisperse because their size is solely determined by the device geometry. This makes the operation of the device very robust. Therefore, the device can be scaled to a large number of nozzles operating simultaneously on the same chip; we demonstrate the operation of more than 500 nozzles on a single chip that produces up to 150 mL h-1 of highly monodisperse drops.


Langmuir | 2013

Adsorption, organization, and rheology of catanionic layers at the air/water interface.

Laura R. Arriaga; Dharmesh Varade; David Carriere; Wiebke Drenckhan; Dominique Langevin

We have investigated the adsorption and organization at the air/water interface of catanionic molecules released from a dispersion of solid-like catanionic vesicles composed of myristic acid and cetyl trimethylammonium chloride at the 2:1 ratio. These vesicles were shown recently to be promising foam stabilizers. Using Brewster angle microscopy, we observed the formation of a catanionic monolayer at the air/water interface composed of liquid-condensed domains in a liquid-expanded matrix. Further adsorption of catanionic molecules forced them to pack, thereby forming a very dense monolayer that prevented further vesicle rupture by avoiding contact of the vesicles with air. Moreover, confocal fluorescence microscopy revealed the presence of layers of intact vesicles that were progressively creaming toward this catanionic monolayer; the surface tension of the vesicle dispersion remained constant upon creaming. The catanionic monolayer behaved as a soft glassy material, an amorphous solid with time- and temperature-dependent properties. Using interfacial oscillatory rheology, we found that the monolayer relaxed mechanical stresses in seconds and melted at a temperature very close to the melting transition temperature of the vesicle bilayers. These results have potential application in the design of smart foams that have temperature-tunable stability.


Biophysical Journal | 2011

Solid Character of Membrane Ceramides: A Surface Rheology Study of Their Mixtures with Sphingomyelin

Elisa R. Catapano; Laura R. Arriaga; Gabriel Espinosa; Francisco Monroy; Dominique Langevin; Iván López-Montero

The compression and shear viscoelasticities of egg-ceramide and its mixtures with sphingomyelin were investigated using oscillatory surface rheology performed on Langmuir monolayers. We found high values for the compression and shear moduli for ceramide, compatible with a solid-state membrane, and extremely high surface viscosities when compared to typical fluid lipids. A fluidlike rheological behavior was found for sphingomyelin. Lateral mobilities, measured from particle tracking experiments, were correlated with the monolayer viscosities through the usual hydrodynamic relationships. In conclusion, ceramide increases the solid character of sphingomyelin-based membranes and decreases their fluidity, thus drastically decreasing the lateral mobilities of embedded objects. This mechanical behavior may involve important physiological consequences in biological membranes containing ceramides.


European Physical Journal E | 2010

Dissipative curvature fluctuations in bilayer vesicles: Coexistence of pure-bending and hybrid curvature-compression modes

Laura R. Arriaga; Ruddi Rodríguez-García; Iván López-Montero; B. Farago; Thomas Hellweg; Francisco Monroy

We have studied the relaxation dynamics of shape fluctuations in unilamellar lipid vesicles by neutron spin echo (NSE). The presence of a hybrid curvature-compression mode coexisting with the usual bending one has been revealed in the experimental relaxation functions at high q . Differently to the conventional relaxation ∼ q3 typical for bending modes, the hybrid mode was found to relax as ∼ q2 , which is compatible with a dissipation mechanism arising from intermonolayer friction. Complementary data obtained from flickering spectroscopy (FS) in giant unilamellar vesicles confirm the existence of both modes coexisting together. By combining NSE and FS data we have depicted the experimental bimodal dispersion diagram, which is found compatible with theoretical predictions for reliable values of the material parameters. From the present data two conventional dynamical methods (NSE and FS) have been shown to be suitable for measuring intermonolayer friction coefficients in bilayer vesicles.

Collaboration


Dive into the Laura R. Arriaga's collaboration.

Top Co-Authors

Avatar

Francisco Monroy

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iván López-Montero

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther Amstad

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruddi Rodríguez-García

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge