Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura R. Guelman is active.

Publication


Featured researches published by Laura R. Guelman.


Journal of Neurochemistry | 2007

Loss of hippocampal neuronal nitric oxide synthase contributes to the stress-related deficit in learning and memory

María Laura Palumbo; Nicolás Sebastián Fosser; Hugo Rios; María Zorrilla Zubilete; Laura R. Guelman; Graciela Cremaschi; Ana María Genaro

Nitric oxide (NO) has been involved in many pathophysiological brain processes. However, the exact role of NO in the cognitive deficit associated to chronic stress exposure has not been elucidated. In this study, we investigated the participation of hippocampal NO production and their regulation by protein kinase C (PKC) in the memory impairment induced in mice subjected to chronic mild stress model (CMS). CMS mice showed a poor learning performance in both open field and passive avoidance inhibitory task respect to control mice. Histological studies showed a morphological alteration in the hippocampus of CMS mice. On the other hand, chronic stress induced a diminished NO production by neuronal nitric oxide synthase (nNOS) correlated with an increment in gamma and zeta PKC isoenzymes. Partial restoration of nNOS activity was obtained after PKC activity blockade. NO production by inducible nictric oxide synthase isoform was not detected. The magnitude of oxidative stress, evaluated by reactive oxygen species production, after excitotoxic levels of NMDA was increased in hippocampus of CMS mice. Moreover, ROS formation was higher in the presence of nNOS inhibitor in both control and CMS mice. Finally, treatment of mice with nNOS inhibitors results in behavioural alterations similar to those observed in CMS animals. These findings suggest a novel role for nNOS showing protective activity against insults that trigger tissue toxicity leading to memory impairments.


Neurochemistry International | 2003

WR-2721 (amifostine, ethyol®) prevents motor and morphological changes induced by neonatal X-irradiation

Laura R. Guelman; Ma Zorrilla Zubilete; H Rios; Luis M. Zieher

Neonatal X-irradiation induces permanent abnormalities in cerebellar cortex cytoarchitecture and neurochemistry, as well as impairment in motor gait. The aim of the present work was to examine the potential protective properties of WR-2721 (Amifostine, Ethyol), a free radical scavenger, against the above mentioned alterations by using a previously described neuroprotection assessment protocol. Pre-irradiation treatment with amifostine was effective in partially preventing the cerebellar morphological damage and the motor gait impairment induced by ionizing radiation. No changes in cerebellar noradrenaline (NA) levels were detected in amifostine-treated irradiated animals. These results suggest that it is possible to counteract radiation-induced damage in the cerebella and motor gait of neonatal rats through oxygen free radical scavenger administration prior to irradiation. The presence of the agent before the injury occurs, favors the efficacy of amifostine neuroprotective activity. Clinical implications of this model are related to the daily exposure of many people to different sources of radiation (accidental, diagnostical or therapeutical).


Molecular and Chemical Neuropathology | 1993

Motor abnormalities and changes in the noradrenaline content and the cytoarchitecture of developing cerebellum following X-Irradiation at birth

Laura R. Guelman; Luis M. Zieher; Hugo Rios; José Mayo; Alejandro M. Dopico

We have studied the developmental time-course of changes in the noradrenaline (NA) content of cerebellum (CE), cytoarchitecture of the cerebellar cortex, and motor abnormalities induced by the exposure of the cephalic end of rats to a single dose (5 Gy) of X-irradiation immediately after birth. At all ages examined, i.e., from postnatal (PN) d 5 to 90, CE from exposed animals show a marked atrophy, with an agranular cortex that has lost its layered structure. Purkinje cells are scattered at all depths in the cortex, and their primary dendrite is randomly oriented. The motor syndrome includes dystonia-like movements, a fine tremor, and an ataxic gait. Being progressive, the abnormal movements are evident from PN d 10, and fully developed by d 30. On the other hand, no differences in cerebellar NA content between X-irradiated rats and age-matched nonirradiated controls were detected from PN d 5 to 60. However, at PN d 90 a significant increase in NA content of CE from exposed animals is found when compared to either age-matched controls (+36%, p < 0.01), or data from irradiated rats obtained at PN d 5 to 60 (p < 0.01). These results indicate a temporal dissociation between the motor and cytoarchitectural abnormalities and the increase in cerebellar NA content produced by a single dose of X-rays at birth. The late increase in cerebellar NA content might represent a compensatory response of noradrenergic terminals to an altered information flow out of the cerebellar cortex induced by the ionizing noxa.


Brain Research | 2000

GM1 ganglioside treatment protects against long-term neurotoxic effects of neonatal X-irradiation on cerebellar cortex cytoarchitecture and motor function

Laura R. Guelman; María Zorrilla Zubilete; Hugo Rios; Alejandro M. Dopico; Luis M. Zieher

Exposure of neonatal rats to a 5 Gy dose of X-irradiation induces permanent abnormalities in cerebellar cortex cytoarchitecture (disarrangement of Purkinje cells, reduction of thickness of granular cortex) and neurochemistry (late increase in noradrenaline levels), and motor function (ataxic gait). The neuroprotective effects of gangliosides have been demonstrated using a variety of CNS injuries, including mechanical, electrolytic, neurotoxic, ischemic, and surgical lesions. Here, we evaluated whether systemically administered GM1 ganglioside protects against the long-term CNS abnormalities induced by a single exposure to ionizing radiation in the early post-natal period. Thus, neonatal rats were exposed to 5 Gy X-irradiation, and subcutaneously injected with one dose (30 mg/kg weight) of GM1 on h after exposure followed by three daily doses. Both at post-natal days 30 and 90, gait and cerebellar cytoarchitecture in X-irradiated rats were significantly impaired when compared to age-matched controls. By contrast, both at post-natal days 30 and 90, gait in X-irradiated rats that were treated with GM1 was not significantly different from that in non-irradiated animals. Furthermore, at post-natal day 90, cerebellar cytoarchitecture was still well preserved in GM1-treated, X-irradiated animals. GM1 failed to modify the radiation-induced increase in cerebellar noradrenaline levels. Present data indicate that exogenous GM1, repeatedly administered after neonatal X-irradiation, produces a long-term radioprotection, demonstrated at both cytoarchitectural and motor levels.


Neurochemistry International | 1996

The effect of X-radiation on cerebellar granule cells grown in culture. Ganglioside GM1 neuroprotective activity.

Laura R. Guelman; Luis M. Zieher; Mónica L. Fiszman

In this paper we describe the effects of X-radiation on the viability of cerebellar granule cells grown in culture. Cell cultures were exposed to X-rays 2 h after plating and then grown for 1-7 days. Two days after X-ray exposure with a dose-range of 0.1-2 Gy (acute effect), a significant decrease in neuronal number was observed. The magnitude of the lethal effect was directly correlated to the dose of X-ray applied. When the interval between plating and irradiation was increased, the acute lethal effect of X-rays decreased. 3H-thymidine incorporation was maximal during the first 24 h in vitro and decreased to nearly blank levels, after 72 h. In some experiments, cells present in each culture dish were counted at day 2 and at day 7. We observed that the number of cells present in sham-irradiated cultures decreased from day 2 to day 7, reflecting cell death after several days in vitro. The cell loss observed in X-irradiated cultures was significantly greater as compared with sham-irradiated cultures, confirming the deleterious effect of X-ray on cell survival. This effect was completely prevented by GM1 (6.5, 10 and 30 microM) added 48 h after X-ray exposure, but not 1 h after plating. We conclude that X-rays induce two different effects: an acute effect related to impaired DNA synthesis which is very active during the first 24 h in vitro, and a long-term effect owing to a sublethal damage in the surviving neuronal population.


Brain Research | 2005

Altered nitric oxide synthase and PKC activities in cerebellum of gamma-irradiated neonatal rats.

María Zorrilla Zubilete; Hugo Rios; Dafne M. Silberman; Laura R. Guelman; María Jimena Ricatti; Ana M. Genaro; Luis M. Zieher

In this study, we show that one single dose of gamma-irradiation at birth induces an inhibition of the cerebellar calcium dependent nitric oxide synthase (NOS) activity, probably correlated to the motor abnormalities and the disarrangement in the cerebellar cytoarchitecture observed in adult rats. This decrease in calcium dependent NOS activity could be associated with an increased protein kinase C (PKC) activity. PKC inhibition partially restores calcium dependent NOS activity, indicating that PKC activity could be negatively modulating the catalytic activity of calcium dependent NOS. These findings suggest that a decrease in nitric oxide (NO) production and the related increase in PKC activity could be intracellular events that participate in the onset of motor and cerebellar abnormalities induced by postnatal gamma-irradiation at early stages of life.


Brain Research Protocols | 2001

Motor, cytoarchitectural and biochemical assessment of pharmacological neuroprotection against CNS damage induced by neonatal exposure to ionizing radiation

Laura R. Guelman; Ma Zorrilla Zubilete; Hugo Rios; C.G. Di Toro; A.M. Dopico; Luis M. Zieher

Exposure of neonatal rats to a 5 Gy single dose of X-irradiation induces permanent abnormalities in cerebellar cortex cytoarchitecture and neurochemistry and motor function. This rodent model constitutes an useful tool to evaluate morphological, neurochemical and motor changes induced by ionizing radiation and the possible restorative effects of potential or clearly established neuroprotective drugs. After selection and administration of a neuroprotective agent to neonatally irradiated rats, quantitative evaluations of motor behavior (gait), cerebellar cortex cytoarchitecture and cerebellar monoamine levels are performed. Data are compared to those of both saline-injected, X-irradiated, and saline-injected, sham-irradiated controls. Evaluation of data from the different experimental groups is performed at postnatal days 30 and 90. After this postnatal interval, radiation-induced damage of cerebellar function in nonprotected rodents is considered to be permanent. The longitudinal evaluation of various parameters in the different experimental groups through a multidisciplinary approach, allows determination of the variables that are more sensitive to X-irradiation-induced damage and/or neuroprotective agent-induced restoration. Given the well-known correspondence in cerebellar developmental stages between rodents and humans, this model and related studies bring health-related implications, considering the accidental or therapeutic exposure of developing human beings to ionizing radiation.


Neurochemistry International | 2011

Partial neuroprotection by 17-β-estradiol in neonatal gamma-irradiated rat cerebellum

María Zorrilla Zubilete; Laura R. Guelman; Damian G. Maur; Lucila Guadalupe Caceres; Hugo Rios; Luis M. Zieher; Ana María Genaro

Acute and long-term complications can occur in patients receiving radiation therapy. It has been suggested that cytoprotection might decrease the incidence and severity of therapy-related toxicity in these patients. Developing cerebellum is highly radiosensitive and for that reason it is a useful structure to test potential neuroprotective substances to prevent radiation induced abnormalities. Recent studies have shown that estrogen can rapidly modulate intracellular signalling pathways involved in cell survival. Thus, it has been demonstrated that estrogens mediate neuroprotection by promoting growth, cell survival and by preventing axonal pruning. The aim of this work was to evaluate the effect of the treatment with 17-β-estradiol on the motor, structural and biochemical changes induced by neonatal ionizing radiation exposure, and to investigate the participation of nitric oxide and protein kinase C, two important intracellular messengers involved in neuronal activity. Our results show that perinatal chronic 17-β-estradiol treatment partially protects against radiation-induced cerebellar disorganization and motor abnormalities. PKC and NOS activities could be implicated in its neuroprotective mechanisms. These data provide new evidence about the mechanisms underlying estrogen neuroprotection, which could have therapeutic relevance for patients treated with radiotherapy.


Journal of Immunotoxicology | 2014

Immune alterations induced by chronic noise exposure: Comparison with restraint stress in BALB/c and C57Bl/6 mice

Cecilia Gabriela Pascuan; Soledad L. Uran; María R. Gonzalez-Murano; Miriam Wald; Laura R. Guelman; Ana María Genaro

Abstract Exposure to loud noise levels represents a problem in all regions of the world. Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. In particular, it has been proposed that noise could affect immune system similarly to other stressors. Nevertheless, only a few studies so far have investigated the effects of noise on the immune function. The aim of the present work was to investigate the effect of chronic (2 weeks) noise (95–97 dBA) exposure on immune responses in BALB/c and C57 mice. To ascertain if the effect of noise is similar to other psychological stressors, the effect of chronic restraint—applied for the same time—on immune response was also analyzed. It was found that chronic noise impaired immune-related end-points in vivo and ex vivo depending on the strain used. Noise, but not restraint, affected C57Bl/6 mouse T-cell-dependent antibody production and ex vivo stimulated T-cell proliferation, but had no effect on these parameters in BALB/c mice or their cells. In fact, none of the stressors altered T-cell responses associated with the BALB/c mice. Further, noise exposure induced a decrease in corticosterone and catecholamines levels in BALB/c mice. In contrast, no differences were seen in these parameters for those BALB/c mice under restraint or for that matter C57Bl/6 mice exposed to restraint or noise. The results of these studies indicate that noise could seriously affect immune responses in susceptible individuals. In addition, it may also be concluded that noise possibility should not be considered a classic stressor.


Neuroscience Research | 1996

Activities of monoamine oxidase-A and -B in adult rat cerebellum following neonatal X-irradiation

Laura R. Guelman; Luis M. Zieher; María Zorrilla Zubilete; Alejandro M. Dopico

The activities of monoamine oxidases, MAO-A and MAO-B, were separately determined in the cerebellum (CE) from adult rats neonatally exposed to 5 Gy X-irradiation. They were found to be markedly reduced: 58% and 66% of values from nonirradiated, littermate controls. Since the specific activities of both isoenzymes (per mg tissue weight) were not significantly different from controls, the reduction of activity per CE is basically explained by the irradiation-induced cerebellar atrophy. The unmodified MAO-A specific activity makes it highly improbable that the increase in the cerebellar noradrenaline content, characteristic of neonatally X-irradiated rats, could be due to a decreased neuronal metabolism of noradrenaline by this enzyme.

Collaboration


Dive into the Laura R. Guelman's collaboration.

Top Co-Authors

Avatar

Luis M. Zieher

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Hugo Rios

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana María Genaro

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

C.G. Di Toro

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.J. Molina

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Forcada

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge