Laura S. Itzhaki
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura S. Itzhaki.
Structure | 2003
Frederic Rousseau; Joost Schymkowitz; Laura S. Itzhaki
Three-dimensional domain swapping is the event by which a monomer exchanges part of its structure with identical monomers to form an oligomer where each subunit has a similar structure to the monomer. The accumulating number of observations of this phenomenon in crystal structures has prompted speculation as to its biological relevance. Domain swapping was originally proposed to be a mechanism for the emergence of oligomeric proteins and as a means for functional regulation, but also to be a potentially harmful process leading to misfolding and aggregation. We highlight experimental studies carried out within the last few years that have led to a much greater understanding of the mechanism of domain swapping and of the residue- and structure-specific features that facilitate the process. We discuss the potential biological implications of domain swapping in light of these findings.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Frederic Rousseau; Joost Schymkowitz; Hannah Wilkinson; Laura S. Itzhaki
p13suc1 has two native states, a monomer and a domain-swapped dimer. We show that their folding pathways are connected by the denatured state, which introduces a kinetic barrier between monomer and dimer under native conditions. The barrier is lowered under conditions that speed up unfolding, thereby allowing, to our knowledge for the first time, a quantitative dissection of the energetics of domain swapping. The monomer–dimer equilibrium is controlled by two conserved prolines in the hinge loop that connects the exchanging domains. These two residues exploit backbone strain to specifically direct dimer formation while preventing higher-order oligomerization. Thus, the loop acts as a loaded molecular spring that releases tension in the monomer by adopting its alternative conformation in the dimer. There is an excellent correlation between domain swapping and aggregation, suggesting they share a common mechanism. These insights have allowed us to redesign the domain-swapping propensity of suc1 from a fully monomeric to a fully dimeric protein.
Current Opinion in Structural Biology | 1998
Jane Clarke; Laura S. Itzhaki
Amide hydrogen-deuterium exchange is a sensitive probe of the structure, stability and dynamics of proteins. The significant increase in the number of small, model proteins that have been studied has allowed a better understanding of the structural fluctuations that lead to hydrogen exchange. Recent technical advances enable the methodology to be applied to the study of protein-protein interactions in much larger, more complex systems.
Journal of Biological Chemistry | 2002
Danielle Sitry; Markus A. Seeliger; Tun K. Ko; Dvora Ganoth; Sadie E Breward; Laura S. Itzhaki; Michele Pagano; Avram Hershko
Previous studies have shown that the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 is targeted for degradation by an SCFSkp2 ubiquitin ligase complex and that this process requires Cks1, a member of the highly conserved Suc1/Cks family of cell cycle regulatory proteins. All proteins of this family have Cdk-binding and anion-binding sites, but only mammalian Cks1 binds to Skp2 and promotes the association of Skp2 with p27 phosphorylated on Thr-187. The molecular mechanisms by which Cks1 promotes the interaction of the Skp2 ubiquitin ligase subunit to p27 remained obscure. Here we show that the Skp2-binding site of Cks1 is located on a region including the α2- and α1-helices and their immediate vicinity, well separated from the other two binding sites. All three binding sites of Cks1 are required for p27-ubiquitin ligation and for the association of Skp2 with Cdk-bound, Thr-187-phosphorylated p27. Cks1 and Skp2 mutually promote the binding of each other to a peptide similar to the 19 C-terminal amino acids of p27 containing phosphorylated Thr-187. This latter process requires the Skp2- and anion-binding sites of Cks1, but not its Cdk-binding site. It is proposed that the Skp2-Cks1 complex binds initially to the C-terminal region of phosphorylated p27 in a process promoted by the anion-binding site of Cks1. The interaction of Skp2 with the substrate is further strengthened by the association of the Cdk-binding site of Cks1 with Cdk2/cyclin E, to which phosphorylated p27 is bound.
Structure | 2003
Kit S. Tang; Alan R. Fersht; Laura S. Itzhaki
The ANK repeat is a ubiquitous 33-residue motif that adopts a beta hairpin helix-loop-helix fold. Multiple tandem repeats stack in a linear manner to produce an elongated structure that is stabilized predominantly by short-range interactions between residues close in sequence. The tumor suppressor p16(INK4) consists of four repeats and represents the minimal ANK folding unit. We found from Phi value analysis that p16 unfolded sequentially. The two N-terminal ANK repeats, which are distorted from the canonical ANK structure in all INK4 proteins and which are important for functional specificity, were mainly unstructured in the rate-limiting transition state for folding/unfolding, while the two C-terminal repeats were fully formed. A sequential unfolding mechanism could have implications for the cellular fate of wild-type and cancer-associated mutant p16 proteins.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Alan R. Lowe; Laura S. Itzhaki
The modular structures of repeat proteins afford them distinct properties compared with globular proteins, enabling them to function in a large and diverse range of cellular processes. Here, we show that they can also have different folding mechanisms. Myotrophin comprises four ankyrin repeats stacked linearly to form an elongated structure. Using site-directed mutagenesis, we find that folding of wild-type myotrophin is initiated at the C-terminal repeats. However, close examination of the mutant chevron plots reveals that simple models are insufficient to describe all of the data, and double mutant analysis subsequently confirms that there are parallel folding pathways. Destabilizing mutations in the C-terminal repeats reduce flux through the wild-type pathway, making a new route accessible in which folding is initiated at the N-terminal repeats. Thus, the folding mechanism of the repeat protein is poised on a fulcrum: When one end of the molecule is perturbed, the balance shifts between the different nucleation sites. The vast majority of studies on small globular proteins indicate a single, well defined route between the denatured and native states. By contrast, the potential to initiate folding at more than one site may be a general feature of repeat proteins arising from the symmetry inherent in their structures. We show that this simple architecture makes it straightforward to direct the folding pathway of a repeat protein by design.
Advances in Experimental Medicine and Biology | 2012
Frederic Rousseau; Joost Schymkowitz; Laura S. Itzhaki
Three-dimensional domain swapping is the process by which two identical protein chains exchange a part of their structure to form an intertwined dimer or higher-order oligomer. The phenomenon has been observed in the crystal structures of a range of different proteins. In this chapter we review the experiments that have been performed in order to understand the sequence and structural determinants of domain-swapping and these show how the general principles obtained can be used to engineer proteins to domain swap. We discuss the role of domain swapping in regulating protein function and as one possible mechanism of protein misfolding that can lead to aggregation and disease. We also review a number of interesting pathways of macromolecular assembly involving β-strand insertion or complementation that are related to the domain-swapping phenomenon.
Journal of Biological Chemistry | 2007
Hui-Yong Y. Lian; Hong Zhang; Zai-Rong Zhang; Harriët M. Loovers; Gary W. Jones; Pamela J. E. Rowling; Laura S. Itzhaki; Jun-Mei M. Zhou; Sarah Perrett
Ure2 is the protein determinant of the [URE3] prion phenotype in Saccharomyces cerevisiae and consists of a flexible N-terminal prion-determining domain and a globular C-terminal glutathione transferase-like domain. Overexpression of the type I Hsp40 member Ydj1 in yeast cells has been found to result in the loss of [URE3]. However, the mechanism of prion curing by Ydj1 remains unclear. Here we tested the effect of overexpression of Hsp40 members Ydj1, Sis1, and Apj1 and also Hsp70 co-chaperones Cpr7, Cns1, Sti1, and Fes1 in vivo and found that only Ydj1 showed a strong curing effect on [URE3]. We also investigated the interaction of Ydj1 with Ure2 in vitro. We found that Ydj1 was able to suppress formation of amyloid-like fibrils of Ure2 by delaying the process of fibril formation, as monitored by thioflavin T binding and atomic force microscopy imaging. Controls using bovine serum albumin, Sis1, or the human Hsp40 homologues Hdj1 or Hdj2 showed no significant inhibitory effect. Ydj1 was only effective when added during the lag phase of fibril formation, suggesting that it interacts with Ure2 at an early stage in fibril formation and delays the nucleation process. Using surface plasmon resonance and size exclusion chromatography, we demonstrated a direct interaction between Ydj1 and both wild type and N-terminally truncated Ure2. In contrast, Hdj2, which did not suppress fibril formation, did not show this interaction. The results suggest that Ydj1 inhibits Ure2 fibril formation by binding to the native state of Ure2, thus delaying the onset of oligomerization.
Trends in Biochemical Sciences | 1997
Jane Clarke; Laura S. Itzhaki; Alan R. Fersht
Hydrogen exchange is an attractive method for observing small populations of partly unfolded states of proteins at equilibrium. It has been suggested that these represent folding intermediates so that hydrogen exchange can offer a short cut for studying protein-folding pathways. This cannot work in theory because it is not possible to tell whether they are intermediates or side reactions. Experimental studies of barnase and chymotrypsin inhibitor 2 show that there is no obvious relationship between hydrogen exchange at equilibrium and their folding pathways.
Nature Structural & Molecular Biology | 2001
Joost Schymkowitz; Frederic Rousseau; Hannah Wilkinson; Assaf Friedler; Laura S. Itzhaki
p13suc1 (suc1) has two native states, a monomer and a domain-swapped dimer. The structure of each subunit in the dimer is identical to that of the monomer, except for the hinge loop that connects the exchanging domains. Here we find that single point mutations at sites throughout the protein and ligand binding both shift the position of the equilibrium between monomer and dimer. The hinge loop was shown previously to act as a loaded molecular spring that releases tension present in the monomer by adopting an alternative conformation in the dimer. The results here indicate that the release of strain propagates throughout the entire protein and alters the energetics of regions remote from the hinge. Our data illustrate how the signal conferred by the conformational change of a protein loop, elicited by domain swapping, ligand binding or mutation, can be sensed by a distant active site. This work highlights the potential role of strained loops in proteins: the energy they store can be used for both signal transduction and allostery, and they could steer the evolution of protein function. Finally, a structural mechanism for the role of suc1 as an adapter molecule is proposed.