Laura Saldaña
Hospital Universitario La Paz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Saldaña.
Acta Biomaterialia | 2009
Laura Saldaña; Sandra Sánchez-Salcedo; Isabel Izquierdo-Barba; Fátima Bensiamar; L. Munuera; María Vallet-Regí; Nuria Vilaboa
Biphasic calcium phosphates (BCPs) consist of a mixture of hydroxyapatite and beta-tricalcium phosphate and are recommended as alternatives or additives to autogenous bone for orthopaedic and dental applications. There is clinical evidence showing particle release from bioceramics, which might impair the ability of human mesenchymal stem cells (hMSC) from bone marrow to proliferate or mature into a functional osteoblast phenotype. This study analyses the influence of BCP particles and their precursors, calcium-deficient apatite (CDA) particles, on in vitro hMSC behaviour. Both types of particles were efficiently internalized by hMSC. Cell viability, morphology and actin cytoskeleton reorganization were unaffected by exposure of hMSC to BCP or CDA particles. Direct exposure to BCP particles impaired hMSC osteogenic differentiation and bone matrix mineralization to a lesser extent than CDA, as assayed by evaluation of alkaline phosphatase activity, osteopontin secretion and mineralized nodule formation. The ability of bioceramic particles to affect osteogenic maturation through modification of soluble factors in media was assayed in an in vitro system that avoids direct cell-particle contact. Indirect exposure to CDA particles severely impaired hMSC osteogenic maturation owing to the uptake of Ca2+ from the culture media. Lower textural properties of BCP and the lack of calcium deficiency in its composition prevented Ca2+ uptake, allowing the development of a functional osteoblast phenotype.
Acta Biomaterialia | 2011
Laura Saldaña; Fátima Bensiamar; Alba Boré; Nuria Vilaboa
Osteosarcoma-derived cells have been routinely used for studying osteoblastic functions, but it remains unclear to what extent they mimic the behavior of primary osteoblasts in the study of cells and materials interactions. This study reports comparatively on the responses of three human osteosarcoma cell lines, MG-63, Saos-2 and U-2 OS, and human primary osteoblasts cultured on Ti6Al4V surfaces or exposed to Ti particles. Phenotypic characterization of the cell lines revealed that Saos-2 cells and primary osteoblasts displayed similar expression patterns of Cbfa1, SP7 and osteocalcin. Unlike primary cells, the cell lines expressed markers of undifferentiated cells, had high proliferative rates and poor fibronectin matrix assembly. None of the three cell lines faithfully reproduced the adhesive behavior of primary osteoblasts when cultured on Ti6Al4V surfaces or exposed to Ti particles. Differences in cell growth between the cell lines and primary osteoblasts cultured on Ti6Al4V surfaces were also observed. Ti particles inhibited the growth of Saos-2 cells and primary osteoblasts to a similar extent, while no such effect was observed in U-2 OS and MG-63 cells. Saos-2 cells reproduced the alkaline phosphatase (ALP) activity profile of primary osteoblasts cultured on metallic surfaces or exposed to particles. Altogether, these results show that none of the osteoblast-like cells studied perfectly mimic the behavior of human osteoblast cells (hOB) on Ti6Al4V surfaces or exposed to Ti particles. Saos-2 cells reproduce some of the hOB responses such as the profile of enzymatic ALP activity when cultured on the surfaces or treated with particles as well as cell growth inhibition when exposed to Ti particles. Although in vitro cytocompatibility studies involve the evaluation of multiple parameters, Saos-2 cells may be used as representative of human osteoblasts when these standard tests are evaluated.
Acta Biomaterialia | 2010
Laura Saldaña; Nuria Vilaboa
Titanium (Ti) and its alloys are widely used in biomedical devices as bone tissue replacements due to their advantageous bulk mechanical properties and biocompatibility. It is known that particles released from Ti-based implants impair essential functions of osteoblasts, which for survival require attachment to specific extracellular matrix proteins at the bone surface. This study investigates whether Ti particles of micrometric sizes affect the osteoblast attachment machinery. Exposure of human osteoblastic Saos-2 cells to Ti particles impaired their adhesion strength, migration and proliferation. Attenuation of these functions was associated with reduced cell spreading, cell membrane disruptions and loss of cell shape. Cell exposure to Ti particles led to changes in cytoskeletal structures, including reduced ventral stress fibers combined with a disorderly arrangement of beta-tubulin and acetylated alpha-tubulin fibers. Cytoskeleton disassembly was associated with a reduction in overall cell adhesion area, characterized by fewer centrally localized focal adhesions and shorter focal contacts at the periphery. Paxillin adaptor protein redistributed to peripheral corner regions, colocalizing with poorly organized actin fibers at attachment sites. Total focal adhesion kinase (FAK) protein amounts, as well as its degree of phosphorylation on the active form p-FAK (Tyr-397), decreased, which was accompanied by a lesser extent of co-localization with paxillin in focal contacts. On the other hand, p-FAK (Tyr-407), an inhibitory form of FAK, accumulated in the focal contacts of Ti-treated cells. Pyk2 phosphorylated on Tyr-402 colocalized with paxillin in focal contacts of untreated cells, while it was barely detected upon exposure to particles. In summary, changes in the phosphorylation states of both FAK and Pyk2 tyrosine kinases at focal contacts underlie impaired bone-forming cell attachment after exposure to Ti particles of micrometric sizes.
Acta Biomaterialia | 2011
A. Calzado-Martín; A. Méndez-Vilas; M. Multigner; Laura Saldaña; José Luis González-Carrasco; M.L. González-Martín; Nuria Vilaboa
Patterned surfaces direct cell spatial dynamics, yielding cells oriented along the surface geometry, in a process known as contact guidance. The Rho family of GTPases controls the assembly of focal adhesions and cytoskeleton dynamics, but its role in modulating bone-cell alignment on patterned surfaces remains unknown. This article describes the interactions of two human cell types involved in osseointegration, specifically mesenchymal stem cells and osteoblasts, with submicron- or nano-scale Ti6Al4V grooved surfaces generated by mechanical abrasion. The surface chemistry of the alloy was not affected by grinding, ensuring that the differences found in cellular responses were exclusively due to changes in topography. Patterned surfaces supported cell growth and stimulated mesenchymal stem cell viability. Anisotropic surfaces promoted cell orientation and elongation along the grates. Both cell types oriented on nanometric surfaces with grooves of 150 nm depth and 2 μm width. The number of aligned cells increased by approximately 30% on submicrometric grooves with sizes of about 1 μm depth and 10 μm width. Cells were treated with drugs that attenuate the activities of the GTPase RhoA and one of its downstream effectors, Rho-associated kinase (ROCK), and contact guidance of treated cells on the grooved surfaces was investigated. The data indicate that the RhoA/ROCK pathway is a key modulator of both mesenchymal stem cell and osteoblast orientation on nanometric surface features. RhoA and its effector participate in the alignment of mesenchymal stem cells on submicrometric grooves, but not of osteoblasts. These findings show that RhoA/ROCK signaling is involved in contact guidance of bone-related cells on metallic substrates, although to a varying extent depending on the specific cell type and the dimensions of the pattern.
Biomaterials | 2015
Gema Vallés; Fátima Bensiamar; Lara Crespo; Manuel Arruebo; Nuria Vilaboa; Laura Saldaña
Implantation of scaffolds may elicit a host foreign body response triggered by monocyte/macrophage lineage cells. Growing evidence suggests that topographical cues of scaffolds play an important role in MSC functionality. In this work, we examined whether surface topographical features can regulate paracrine interactions that MSCs establish with macrophages. Three-dimensional (3D) topography sensing drives MSCs into a spatial arrangement that stimulates the production of the anti-inflammatory proteins PGE2 and TSG-6. Compared to two-dimensional (2D) settings, 3D arrangement of MSCs co-cultured with macrophages leads to an important decrease in the secretion of soluble factors related with inflammation and chemotaxis including IL-6 and MCP-1. Attenuation of MCP-1 secretion in 3D co-cultures correlates with a decrease in the accumulation of its mRNA levels in MSCs and macrophages. Using neutralizing antibodies, we identified that the interplay between PGE2, IL-6, TSG-6 and MCP-1 in the co-cultures is strongly influenced by the micro-architecture that supports MSCs. Local inflammatory milieu provided by 3D-arranged MSCs in co-cultures induces a decrease in monocyte migration as compared to monolayer cells. This effect is partially mediated by reduced levels of IL-6 and MCP-1, proteins that up-regulate each others secretion. Our findings highlight the importance of topographical cues in the soluble factor-guided communication between MSCs and macrophages.
Acta Biomaterialia | 2009
M. C. García-Alonso; Laura Saldaña; C. Alonso; Violeta Barranco; M.A. Muñoz-Morris; M. L. Escudero
In this work, the in situ interaction between Ti-6Al-4V alloy and osteoblastic cells has been studied by electrochemical techniques as a function of time. The interaction has been monitored for cell adhesion and growth of human osteoblastic Saos-2 cells on Ti-6Al-4V samples. The study has been carried out by electrochemical techniques, e.g., studying the evolution of corrosion potential with exposure time and by electrochemical impedance spectroscopy. The impedance results have been analyzed by using different equivalent circuit models that simulate the interface state at each testing time. The adhesion of the osteoblastic cells on the Ti-6Al-4V alloy leads to surface areas with different cell coverage rates, thus showing the different responses in the impedance diagrams with time. The effect of the cells on the electrochemical response of Ti-6Al-4V alloy is clearly seen after 4 days of testing, in which two isolated and well-differentiated time constants are clearly observed. One of these is associated with the presence of the cells and the other with a passive film on the Ti-6Al-4V alloy. After 7 days of culture, the system is governed by a resistive component over a wide frequency range which is associated with an increase in the cell coverage rate on the surface due to the extracellular matrix.
Acta Biomaterialia | 2010
Alicia Calzado-Martín; Laura Saldaña; Hannu Korhonen; Antti Soininen; Teemu J. Kinnari; Enrique Gómez-Barrena; Veli-Matti Tiainen; Reijo Lappalainen; L. Munuera; Yrjö T. Konttinen; Nuria Vilaboa
Diamond-like carbon (DLC) coatings produced using the plasma-accelerating filtered pulsed arc discharge (FPAD) method display excellent adherence to the substrate and improve its corrosion resistance. This article reports the interactions of human osteoblastic cells with DLC and two DLC polymer hybrid (DLC-p-h) coatings deposited on smooth, matt and rough silicon wafers by the FPAD method. The DLC-p-h materials were DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) and DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) coatings. The biocompatibility of the coatings was assayed by using mesenchymal stem cells, primary osteoblasts and Saos-2 cells. Human mesenchymal stem cells proliferated when cultured on DLC and DLC-PTFE-h, but their numbers diminished on DLC-PDMS-h. In all three cell types studied, phalloidin-TRITC staining disclosed cell-type organization typical of an actin cytoskeleton on DLC and DLC-PTFE-h, but minimal and disorganized stress fibers on cells cultured on DLC-PDMS-h. The microtubular cytoskeleton was similarly disorganized on DLC-PDMS-h. Cells on DLC-PDMS-h developed a peculiar form of membrane damage, with nuclear staining by propidium iodide associated with granular calcein staining of the cytoplasm. Active caspase-3 labeling was only seen in cells cultured on DLC-PDMS-h, indicating that these cells undergo apoptosis induced by defective cell adhesion. Results suggest that DLC-PDMS-h coatings might be useful in orthopedic applications where an implant or implant-facet should be protected against bone overgrowth while DLC and DLC-PTFE-h coatings might improve osseointegration.
Colloids and Surfaces B: Biointerfaces | 2013
Abraham Rodríguez-Cano; Pedro Cintas; María-Coronada Fernández-Calderón; M.A. Pacha-Olivenza; Lara Crespo; Laura Saldaña; Nuria Vilaboa; M.L. González-Martín; Reyes Babiano
Formation of thin films on titanium alloys incorporating bioactive small molecules or macromolecules is a route to improve their biocompatibility. Aminoalkylsilanes are commonly employed as interface reagents that combine good adhesion properties with an amino tail group susceptible of further functionalization. This article introduces a reproducible methodology to obtain a cross-linked polymer-type brush structure of covalently-bonded aminoalkylsiloxane chains on Ti6Al4V. The experimental protocol can be fine-tuned to provide a high density of surface-coated amino groups (threshold value: 2.1±0.1×10(-8) mol cm(-2)) as proven by chemical and spectrophotometric analyses. Using a model reaction involving the condensation of 3-aminopropyltrimethoxysilane (APTMS) on Ti6Al4V alloy, we herein show the effects of reaction temperature, reaction time and solvent humidity on the composition and structure of the film. The stability of the resulting coating under physiological-like conditions as well as the possibility of surface re-silanization has also been evaluated. To verify if detrimental effects on the biological performance of the Ti6Al4V alloy were induced by this coverage, human primary osteoblasts behavior, Staphylococci adhesion and biofilm formation have been tested and compared to the Ti6Al4V oxidized surface. Reaction with trans-cinnamaldehyde has used in order to determine useful amino groups at aminosilanized surface, XPS and UV analyses of imino derivatives generated reveal that almost a 50% of these groups are actually available at the siloxane chains.
Biomaterials | 2002
A. M. Rodrigo; M. E. Martínez; Laura Saldaña; G. Vallés; P. Martínez; José Luis González-Carrasco; J. Cordero; L. Munuera
The effect of two biomaterials, polyethylene and alpha-alumina, on interleukin-6 (IL-6) secretion and expression has been studied in human osteoblasts in primary culture. Human osteoblastic cells were derived from fresh trabecular bone explants removed during total knee arthroplasty. On reaching confluence, cells were subcultured in 6 well plates; the resulting subcultures were incubated until confluence and polyethylene or alpha-alumina particles were added to some while the rest were left as controls. The IL-6 mRNA levels were assessed by reverse transcription (RT) followed by polymerase chain reaction (PCR). IL-6 secretion was measured in the conditioned medium. The IL-6 expression was higher in the presence of both biomaterials. Maximum expression occurred in response to a dose of 50 mg particles well with both biomaterials and was greater after polyethylene particle addition than after alpha-alumina particle addition at this dose. The maximum IL-6 secretion elicited by alpha-alumina was produced at 10 mg particles well while maximum response with polyethylene required 50 mg well. At a dose of 10 mg/well, alpha-alumina particles induced more secretion than 10 mg of polyethylene particles. Nevertheless, at a dose of 50 mg/well maximum secretion was produced with polyethylene particles. In conclusion and in our experimental conditions, polyethylene as well as alpha-alumina increased both the expression and the secretion of IL-6 in human osteoblastic cells in primary culture and stimulation from polyethylene appears stronger than that from alpha-alumina at the same dose.
Journal of Biomedical Materials Research Part A | 2016
Sandra C. Cifuentes; Fátima Bensiamar; Amparo M. Gallardo-Moreno; Tim A. Osswald; José Luis González-Carrasco; Rosario Benavente; María L. González‐Martín; Eduardo García-Rey; Nuria Vilaboa; Laura Saldaña
In this work, we investigated a new approach to incorporate Mg particles within a PDLLA matrix using a solvent-free commercially available process. PDLLA/Mg composites were manufactured by injection moulding and the effects of Mg incorporated into PDLLA on MSC and macrophage responses were evaluated. Small amounts of Mg particles (≤ 1 wt %) do not cause thermal degradation of PDLLA, which retains its mechanical properties. PDLLA/Mg composites release hydrogen, alkaline products and Mg(2+) ions without changing pH of culture media. Mg-containing materials provide a noncytotoxic environment that enhances MSC viability. Concentration of Mg(2+) ions in extracts of MSCs increases with the increment of Mg content in the composites. Incorporation of Mg particles into PDLLA stimulates FN production, ALP activity, and VEGF secretion in MSCs, an effect mediated by degradation products dissolved from the composites. Degradation products of PDLLA induce an increase in MCP-1, RANTES, and MIP-1α secretion in macrophages while products of composites have minimal effect on these chemokines. Regulation of MSC behavior at the biomaterials interface and macrophage-mediated inflammatory response to the degradation products is related to the incorporation of Mg in the composites. These findings suggest that including small amounts of Mg particles into polymeric devices can be a valuable strategy to promote osseointegration and reduce host inflammatory response.