Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Selbmann is active.

Publication


Featured researches published by Laura Selbmann.


Studies in Mycology | 2009

A class-wide phylogenetic assessment of Dothideomycetes

Conrad L. Schoch; Pedro W. Crous; Johannes Z. Groenewald; Eric W.A. Boehm; T. Burgess; J. de Gruyter; G.S. de Hoog; L. J. Dixon; Martin Grube; Cécile Gueidan; Yukio Harada; Satoshi Hatakeyama; Kazuyuki Hirayama; Tsuyoshi Hosoya; Sabine M. Huhndorf; Kevin D. Hyde; E.B.G. Jones; Jan Kohlmeyer; Åsa Kruys; Yan Li; R. Lücking; H.T. Lumbsch; Ludmila Marvanová; J.S. Mbatchou; A. H.. McVay; Andrew N. Miller; G.K. Mugambi; Lucia Muggia; Matthew P. Nelsen; P. Nelson

We present a comprehensive phylogeny derived from 5 genes, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, for 356 isolates and 41 families (six newly described in this volume) in Dothideomycetes. All currently accepted orders in the class are represented for the first time in addition to numerous previously unplaced lineages. Subclass Pleosporomycetidae is expanded to include the aquatic order Jahnulales. An ancestral reconstruction of basic nutritional modes supports numerous transitions from saprobic life histories to plant associated and lichenised modes and a transition from terrestrial to aquatic habitats are confirmed. Finally, a genomic comparison of 6 dothideomycete genomes with other fungi finds a high level of unique protein associated with the class, supporting its delineation as a separate taxon.


Studies in Mycology | 2009

Phylogeny of rock-inhabiting fungi related to Dothideomycetes

C. Ruibal; Cécile Gueidan; Laura Selbmann; Anna A. Gorbushina; Pedro W. Crous; Johannes Z. Groenewald; Lucia Muggia; Martin Grube; Daniela Isola; Conrad L. Schoch; J.T. Staley; François Lutzoni; G.S. de Hoog

The class Dothideomycetes (along with Eurotiomycetes) includes numerous rock-inhabiting fungi (RIF), a group of ascomycetes that tolerates surprisingly well harsh conditions prevailing on rock surfaces. Despite their convergent morphology and physiology, RIF are phylogenetically highly diverse in Dothideomycetes. However, the positions of main groups of RIF in this class remain unclear due to the lack of a strong phylogenetic framework. Moreover, connections between rock-dwelling habit and other lifestyles found in Dothideomycetes such as plant pathogens, saprobes and lichen-forming fungi are still unexplored. Based on multigene phylogenetic analyses, we report that RIF belong to Capnodiales (particularly to the family Teratosphaeriaceae s.l.), Dothideales, Pleosporales, and Myriangiales, as well as some uncharacterised groups with affinities to Dothideomycetes. Moreover, one lineage consisting exclusively of RIF proved to be closely related to Arthoniomycetes, the sister class of Dothideomycetes. The broad phylogenetic amplitude of RIF in Dothideomycetes suggests that total species richness in this class remains underestimated. Composition of some RIF-rich lineages suggests that rock surfaces are reservoirs for plant-associated fungi or saprobes, although other data also agree with rocks as a primary substrate for ancient fungal lineages. According to the current sampling, long distance dispersal seems to be common for RIF. Dothideomycetes lineages comprising lichens also include RIF, suggesting a possible link between rock-dwelling habit and lichenisation.


Research in Microbiology | 2002

Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080

Laura Selbmann; Silvano Onofri; Massimiliano Fenice; Federico Federici; Maurizio Petruccioli

The filamentous fungus Phoma herbarum CCFEE 5080 isolated from continental Antarctica soil was tested for exopolysaccharide (EPS) production. The fungus grew and produced EPS (up to 13.6 g/l) on a variety of carbon sources among which sorbitol was best, particularly at the concentration of 60 g/l. EPS production was maximum when the nitrogen source was NaNO3 (3 g/l) and the incubation temperature was 28 degrees C. The polysaccharide was purified by repeated precipitation in ethanol and gel filtration and characterized as a homopolymer of glucose having a molecular weight of 7.412 x 10(6); structural analysis indicated the presence of beta-1,3 and beta-1,6 linkages only. After repeated freezing and thawing of the fungal biomass in the presence of EPS, the mycelial growth was much higher than that observed after freezing in the absence of EPS and the difference increased with the number of freeze-thaw cycles. It is hypothesized that the adaptation of P. herbarum CCFEE 5080 to the Antarctic soil microclimatic conditions, characterized by low temperature, high thermal fluctuations and repeated freeze-thaw cycles, might be related to the EPS production ability.


Astrobiology | 2012

Survival of Rock-Colonizing Organisms After 1.5 Years in Outer Space

Silvano Onofri; Rosa de la Torre; Jean-Pierre de Vera; Sieglinde Ott; Laura Zucconi; Laura Selbmann; Giuliano Scalzi; Kasthuri Venkateswaran; Elke Rabbow; Francisco Javier Sanchez Inigo; Gerda Horneck

Cryptoendolithic microbial communities and epilithic lichens have been considered as appropriate candidates for the scenario of lithopanspermia, which proposes a natural interplanetary exchange of organisms by means of rocks that have been impact ejected from their planet of origin. So far, the hardiness of these terrestrial organisms in the severe and hostile conditions of space has not been tested over extended periods of time. A first long-term (1.5 years) exposure experiment in space was performed with a variety of rock-colonizing eukaryotic organisms at the International Space Station on board the European EXPOSE-E facility. Organisms were selected that are especially adapted to cope with the environmental extremes of their natural habitats. It was found that some-but not all-of those most robust microbial communities from extremely hostile regions on Earth are also partially resistant to the even more hostile environment of outer space, including high vacuum, temperature fluctuation, the full spectrum of extraterrestrial solar electromagnetic radiation, and cosmic ionizing radiation. Although the reported experimental period of 1.5 years in space is not comparable with the time spans of thousands or millions of years believed to be required for lithopanspermia, our data provide first evidence of the differential hardiness of cryptoendolithic communities in space.


Studies in Mycology | 2008

Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi.

Laura Selbmann; G.S. de Hoog; L. Zucconi; Daniela Isola; Serena Ruisi; A.H.G. Gerrits van den Ende; Constantino Ruibal; F. De Leo; C. Urzì; S. Onofri

Fungal strains isolated from rocks and lichens collected in the Antarctic ice-free area of the Victoria Land, one of the coldest and driest habitats on earth, were found in two phylogenetically isolated positions within the subclass Dothideomycetidae. They are here reported as new genera and species, Recurvomyces mirabilis gen. nov., sp. nov. and Elasticomyces elasticus gen. nov., sp. nov. The nearest neighbours within the clades were other rock-inhabiting fungi from dry environments, either cold or hot. Plant-associated Mycosphaerella-like species, known as invaders of leathery leaves in semi-arid climates, are also phylogenetically related with the new taxa. The clusters are also related to the halophilic species Hortaea werneckii, as well as to acidophilic fungi. One of the latter, able to grow at pH 0, is Scytalidium acidophilum, which is ascribed here to the newly validated genus Acidomyces. The ecological implications of this finding are discussed.


Polar Biology | 1997

Production of extracellular enzymes by Antarctic fungal strains

Massimiliano Fenice; Laura Selbmann; Laura Zucconi; Silvano Onofri

Abstract Thirty-three fungal strains, isolated from different sites on Victoria Land (continental Antarctica), were plate-screened for their ability to produce twelve extracellular enzymes. Lipases were generally present and in high quantities in almost all the strains. Polygalacturonase, as well as amylase and phosphatase, was common. Glucose oxidase, protease and DNAase appeared to be generally low or absent. Many strains, producing a limited number of enzymes, appeared to have a low eco-nutritional versatility while a few, such as Verticillium cfr. lecanii no. 1, V. cfr. lecanii no. 3, Aspergillus versicolor and Phoma sp. no. 2, showing a diversified enzymatic competence, are probably advantaged in extreme terrestrial environments characterized by low competition. The possibility of utilizing the enzyme-producing ability of these fungi in applied research is also discussed.


Research in Microbiology | 1998

Chitinolytic activity at low temperature of an Antarctic strain (A3) of Verticillium lecanii

Massimiliano Fenice; Laura Selbmann; R. Di Giambattista; Federico Federici

The chitinolytic activity of Verticillium cfr. lecanii A3, a strain isolated from continental Antarctica, was compared to those of two selected strains of Trichoderma harzianum. After 72 h of incubation at 25 degrees C in media containing chitin as the sole carbon source, all strains showed the same enzyme activity (ca. 230 mU/ml); at 15 degrees C, the levels of enzyme activity of the three strains were similar to those obtained at 25 degrees C. At 5 degrees C, in contrast, the activity of V. lecanii was ca. 4 times higher than those of both strains of T. harzianum (203 and 57 mU/ml, respectively; incubation time 144 h). The chitinase of V. lecanii, purified by preparative isoelectric focusing and ion-exchange chromatography, was shown to be a glycoprotein with apparent molecular weight of 45 kDa and isoelectric point of 4.9. The enzyme was active over a broad range of temperatures (5-60 degrees C): at 5 degrees C, its relative activity was still 50% of that recorded at 40 degrees C (optimal temperature). V. lecanii and its purified chitinase showed clear inhibitory effects on the growth of some test moulds such as Mucor plumbeus, Cladosporium cladosporioides, Aspergillus versicolor and Penicillium verrucosum: observations under the light and scanning electron microscopes revealed that growth inhibition was accompanied by mycelial damage and cell lysis.


Polar Biology | 1996

Growth temperature preferences of fungal strains from Victoria Land, Antarctica

Laura Zucconi; Sabina Pagano; Massimiliano Fenice; Laura Selbmann; Solveig Tosi; Silvano Onofri

Thirty-five strains of microfungi, isolated from various sites in Victoria Land, Antarctica, were grown at eight temperatures ranging from 0 to 45°C. Only 1 strain (Chaetomium sp. from hot soil) was a thermotolerant mesophile; other strains were psychrophilic (2 strains) or psychrotrophic (32 strains). The fitness of different species to thermal instability is discussed, based on the width of the growth rate curves.


Polar Biology | 2010

Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance

Laura Selbmann; Laura Zucconi; Serena Ruisi; Martin Grube; Massimiliano Cardinale; Silvano Onofri

Antarctic habitats harbour yet unexplored niches for microbial communities. Among these, lichen symbioses are very long-living and stable microenvironments for bacterial colonization. In this work, we present a first assessment of the culturable fraction of bacteria associated with Antarctic lichens. A phylogenetic analysis based on 16S rRNA gene sequence of 30 bacterial strains isolated from five epilithic lichens belonging to four species (Lecanora fuscobrunnea, Umbilicaria decussata, Usnea antarctica, Xanthoria elegans) shows that these represent the main bacterial lineages Actinobacteria, Firmicutes, Proteobacteria and Deinococcus-Thermus. Within the Actinomycetales, two strains group in the genera Arthrobacter and Knoellia, respectively. Most of the other Actinobacteria form well-supported groups, but could be assigned with certainty only at the family level, and one is in isolated position in the Mycobacteriaceae. The strains in Firmicutes and Proteobacteria belong to the genera Paenibacillus,Bacillus and Pseudomonas, which were already reported from lichen thalli. Some genera such as Burkholderia and Azotobacter, reported in the literature as also associated with lichens, have not been detected in this study. One strain represents the first record of Deinococcus in epilithic lichens; it is related to the species Deinococcus alpinitundrae from Alpine environments and may represent a new species. Further separated and well-supported clades indicate the presence of possibly new entities. Some of the examined strains are related to known psychrophilic bacteria isolated from ice and other extreme environments, others with bacteria distributed worldwide even in temperate climates. Most of the strains tested were able to grow at low temperatures, but tolerated a wider range of temperature. Ecological and evolutionary implications of these lichen-associated bacteria are discussed.


Mycopathologia | 2013

Isolation and Screening of Black Fungi as Degraders of Volatile Aromatic Hydrocarbons

Daniela Isola; Laura Selbmann; G. Sybren de Hoog; Massimiliano Fenice; Silvano Onofri; Francesc X. Prenafeta-Boldú; Laura Zucconi

Black fungi reported as degraders of volatile aromatic compounds were isolated from hydrocarbon-polluted sites and indoor environments. Several of the species encountered are known opportunistic pathogens or are closely related to pathogenic species causing severe mycoses, among which are neurological infections in immunocompetent individuals. Given the scale of the problem of environmental pollution and the phylogenetic relation of aromate-degrading black fungi with pathogenic siblings, it is of great interest to select strains able to mineralize these substrates efficiently without any risk for public health. Fifty-six black strains were obtained from human-made environments rich in hydrocarbons (gasoline car tanks, washing machine soap dispensers) after enrichment with some phenolic intermediates of toluene and styrene fungal metabolism. Based on ITS sequencing identification, the majority of the obtained isolates were members of the genus Exophiala. Exophiala xenobiotica was found to be the dominant black yeast present in the car gasoline tanks. A higher biodiversity, with three Exophiala species, was found in soap dispensers of washing machines. Strains obtained were screened using a 2,6-dichlorophenol-indophenol (DCPIP) assay, optimized for black fungi, to assess their potential ability to degrade toluene. Seven out of twenty strains tested were able to use toluene as carbon source.

Collaboration


Dive into the Laura Selbmann's collaboration.

Top Co-Authors

Avatar

Silvano Onofri

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Laura Zucconi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Pacelli

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge