Laura Silo-Suh
Auburn University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Silo-Suh.
Infection and Immunity | 2003
Steve P. Bernier; Laura Silo-Suh; Donald E. Woods; Dennis E. Ohman; Pamela A. Sokol
ABSTRACT A simple alfalfa model was developed as an alternative infection model for virulence studies of the Burkholderia cepacia complex. Symptoms of disease were observed in wounded alfalfa seedlings within 7 days following inoculation of 101 to 105 CFU of most strains of the B. cepacia complex. Strains from seven genomovars of the B. cepacia complex were tested for virulence in the alfalfa model, and the degree of virulence was generally similar in strains belonging to the same genomovar. Strains of Burkholderia multivorans and some strains of Burkholderia stabilis did not cause symptoms of disease in alfalfa seedlings. Representative strains were also tested for virulence using the rat agar bead model. Most of the strains tested were able to establish chronic lung infections; B. stabilis strains were the exception. Most of the strains that were virulent in the alfalfa infection model were also virulent in the lung infection model. The B. cepacia genomovar III mutants K56pvdA::tp and K56-H15 were significantly less virulent in the alfalfa infection model than their parent strain. Therefore, this alfalfa infection model may be a useful tool for assessing virulence of strains of the B. cepacia complex and identifying new virulence-associated genes.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Laura Silo-Suh; Sang-Jin Suh; Pamela A. Sokol; Dennis E. Ohman
A sensitive plant infection model was developed to identify virulence factors in nontypeable, alginate overproducing (mucoid) Pseudomonas aeruginosa strains isolated from cystic fibrosis (CF) patients with chronic pulmonary disease. Nontypeable strains with defects in lipopolysaccharide O-side chains are common to CF and often exhibit low virulence in animal models of infection. However, 1,000 such bacteria were enough to show disease symptoms in the alfalfa infection. A typical mucoid CF isolate, FRD1, and its isogenic mutants were tested for alfalfa seedling infection. Although defects in the global regulators Vfr, RpoS, PvdS, or LasR had no discernable effect on virulence, a defect in RhlR reduced the infection frequency by >50%. A defect in alginate biosynthesis resulted in plant disease with >3-fold more bacteria per plant, suggesting that alginate overproduction attenuated bacterial growth in planta. FRD1 derivatives lacking AlgT, a sigma factor required for alginate production, were reduced >50% in the frequency of infection. Thus, AlgT apparently regulates factors in FRD1, besides alginate, important for pathogenesis. In contrast, in a non-CF strain, PAO1, an algT mutation did not affect its virulence on alfalfa. Conversely, PAO1 virulence was reduced in a mucA mutant that overproduced alginate. These observations suggested that mucoid conversion in CF may be driven by a selection for organisms with attenuated virulence or growth in the lung, which promotes a chronic infection. These studies also demonstrated that the wounded alfalfa seedling infection model is a useful tool to identify factors contributing to the persistence of P. aeruginosa in CF.
Journal of Bacteriology | 2000
Sonal Malhotra; Laura Silo-Suh; Kalai Mathee; Dennis E. Ohman
Pseudomonas aeruginosa strains that cause chronic pulmonary infections in cystic fibrosis patients typically undergo mucoid conversion. The mucoid phenotype indicates alginate overproduction and is often due to defects in MucA, an antisigma factor that controls the activity of sigma-22 (AlgT [also called AlgU]), which is required for the activation of genes for alginate biosynthesis. In this study we hypothesized that mucoid conversion may be part of a larger response that activates genes other than those for alginate synthesis. To address this, a two-dimensional (2-D) gel analysis was employed to compare total proteins in strain PAO1 to those of its mucA22 derivative, PDO300, in order to identify protein levels enhanced by mucoid conversion. Six proteins that were clearly more abundant in the mucoid strain were observed. The amino termini of such proteins were determined and used to identify the gene products in the genomic database. Proteins involved in alginate biosynthesis were expected among these, and two (AlgA and AlgD) were identified. This result verified that the 2-D gel approach could identify gene products under sigma-22 control and upregulated by mucA mutation. Two other protein spots were also clearly upregulated in the mucA22 background, and these were identified as porin F (an outer membrane protein) and a homologue of DsbA (a disulfide bond isomerase). Single-copy gene fusions were constructed to test whether these proteins were enhanced in the mucoid strain due to increased transcription. The oprF-lacZ fusion showed little difference in levels of expression in the two strains. However, the dsbA-lacZ fusion showed two- to threefold higher expression in PDO300 than in PAO1, suggesting that its promoter was upregulated by the deregulation of sigma-22 activity. A dsbA-null mutant was constructed in PAO1 and shown to have defects predicted for a cell with reduced disulfide bond isomerase activity, namely, reduction in periplasmic alkaline phosphatase activity, increased sensitivity to dithiothreitol, reduced type IV pilin-mediated twitching motility, and reduced accumulation of extracellular proteases, including elastase. Although efficient secretion of elastase in the dsbA mutant was still demonstrable, the elastase produced appeared to be unstable, possibly as a result of mispaired disulfide bonds. Disruption of dsbA in the mucoid PDO300 background did not affect alginate production. Thus, even though dsbA is coregulated with mucoid conversion, it was not required for alginate production. This suggests that mucA mutation, which deregulates sigma-22, results in a global response that includes other factors in addition to increasing the production of alginate.
Microbiology | 2008
Tamishia L. Lindsey; Jessica M. Hagins; Pamela A. Sokol; Laura Silo-Suh
Chronic lung infections caused by Pseudomonas aeruginosa are the leading cause of morbidity and mortality for cystic fibrosis (CF) patients. Adaptation of P. aeruginosa to the CF lung results in the loss of acute virulence determinants and appears to activate chronic virulence strategies in this pathogen. In order to identify such strategies, a random transposon mutagenesis was performed and 18 genes that were required for optimal infection of alfalfa seedlings by FRD1, a CF isolate of P. aeruginosa, were recognized. The largest subset of genes (seven of the 18), were associated with central carbon metabolism, including the gene that encodes isocitrate lyase (ICL), aceA. Because FRD1 is avirulent in animal infection models, we constructed an ICL mutant in P. aeruginosa strain PAO1 in order to assess the requirement of ICL in mammalian infection. The PAO1 ICL mutant was less virulent in the rat lung infection model, indicating that ICL is required for the pathogenesis of P. aeruginosa in mammals. Furthermore, FRD1 showed increased ICL activity and expression of an aceA : : lacZ fusion compared to PAO1. We suggest that upregulation of ICL occurred during adaptation of FRD1 to the CF lung and that some of the novel virulence mechanisms employed by FRD1 to infect alfalfa seedlings may be the same mechanisms P. aeruginosa relies upon to persist within human niches.
Journal of Bacteriology | 2005
Laura Silo-Suh; Sang-Jin Suh; Paul V. Phibbs; Dennis E. Ohman
Cystic fibrosis (CF) patients are highly susceptible to chronic pulmonary disease caused by mucoid Pseudomonas aeruginosa strains that overproduce the exopolysaccharide alginate. We showed here that a mutation in zwf, encoding glucose-6-phosphate dehydrogenase (G6PDH), leads to a approximately 90% reduction in alginate production in the mucoid, CF isolate, P. aeruginosa FRD1. The main regulator of alginate, sigma-22 encoded by algT (algU), plays a small but demonstrable role in the induction of zwf expression in P. aeruginosa. However, G6PDH activity and zwf expression were higher in FRD1 strains than in PAO1 strains. In PAO1, zwf expression and G6PDH activity are known to be subject to catabolite repression by succinate. In contrast, FRD1 zwf expression and G6PDH activity were shown to be refractory to such catabolite repression. This was apparently not due to a defect in the catabolite repression control (Crc) protein. Such relaxed control of zwf was found to be common among several examined CF isolates but was not seen in other strains of clinical and environmental origin. Two sets of clonal isolates from individual CF patient indicated that the resident P. aeruginosa strain underwent an adaptive change that deregulated zwf expression. We hypothesized that high-level, unregulated G6PDH activity provided a survival advantage to P. aeruginosa within the lung environment. Interestingly, zwf expression in P. aeruginosa was shown to be required for its resistance to human sputum. This study illustrates that adaptation to the CF pulmonary environment by P. aeruginosa can include altered regulation of basic metabolic activities, including carbon catabolism.
Journal of Bacteriology | 2009
Jessica M. Hagins; Robert Locy; Laura Silo-Suh
Pseudomonas aeruginosa colonizes and can persist in the lungs of cystic fibrosis (CF) patients for decades. Adaptation of P. aeruginosa to the CF lung environment causes various genotypic and phenotypic alterations in the bacterium that facilitate persistence. We showed previously that isocitrate lyase (ICL) activity is constitutively upregulated in the P. aeruginosa CF isolate FRD1. We show here that high ICL activity in FRD1 contributes to increased hydrogen cyanide (HCN) production by this isolate. Disruption of aceA, which encodes ICL, results in reduced cyanide production by FRD1 but does not affect cyanide production in the wound isolate PAO1. Cyanide production is restored to the FRD1aceA mutant by addition of glyoxylate, a product of ICL activity, or glycine to the growth medium. Conversion of glyoxylate to glycine may provide a mechanism for increased cyanide production by P. aeruginosa growing on compounds that activate the glyoxylate pathway. Consistent with this hypothesis, disruption of PA5304, encoding a putative d-amino acid dehydrogenase (DadA), led to decreased cyanide production by FRD1. Cyanide production was restored to the FRD1dadA mutant by the addition of glycine, but not glyoxylate, to the growth medium, suggesting that loss of the ability to convert glyoxylate to glycine was associated with the dadA mutation. This was supported by increased glycine production from toluene-treated FRD1 cells with the addition of glyoxylate compared to FRD1dadA cells. This study indicates a larger role for ICL in the physiology and virulence of chronic isolates of P. aeruginosa than previously recognized.
Microbiology | 2010
Jessica M. Hagins; Jessica Scoffield; Sang-Jin Suh; Laura Silo-Suh
Pseudomonas aeruginosa is the major aetiological agent of chronic pulmonary infections in patients with cystic fibrosis (CF). The metabolic pathways utilized by P. aeruginosa during these infections, which can persist for decades, are poorly understood. Several lines of evidence suggest that the glyoxylate pathway, which utilizes acetate or fatty acids to replenish intermediates of the tricarboxylic acid cycle, is an important metabolic pathway for P. aeruginosa adapted to the CF lung. Isocitrate lyase (ICL) is one of two major enzymes of the glyoxylate pathway. In a previous study, we determined that P. aeruginosa is dependent upon aceA, which encodes ICL, to cause disease on alfalfa seedlings and in rat lungs. Expression of aceA in PAO1, a P. aeruginosa isolate associated with acute infection, is regulated by carbon sources that utilize the glyoxyate pathway. In contrast, expression of aceA in FRD1, a CF isolate, is constitutively upregulated. Moreover, this deregulation of aceA occurs in other P. aeruginosa isolates associated with chronic infection, suggesting that high ICL activity facilitates adaptation of P. aeruginosa to the CF lung. Complementation of FRD1 with a PAO1 clone bank identified that rpoN negatively regulates aceA. However, the deregulation of aceA in FRD1 was not due to a knockout mutation of rpoN. Regulation of the glyoxylate pathway by RpoN is likely to be indirect, and represents a unique regulatory role for this sigma factor in bacterial metabolism.
Canadian Journal of Microbiology | 2014
Jonathan B. Daniels; Jessica Scoffield; Jessica L. Woolnough; Laura Silo-Suh
Pseudomonas aeruginosa establishes life-long chronic infections in the cystic fibrosis (CF) lung by utilizing various adaptation strategies. Some of these strategies include altering metabolic pathways to utilize readily available nutrients present in the host environment. The airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphatidylcholine, a major component of lung surfactant. Pseudomonas aeruginosa can degrade phosphatidylcholine to glycerol and fatty acids to increase the availability of usable carbon sources in the CF lung. In this study, we show that some CF-adapted P. aeruginosa isolates utilize glycerol more efficiently as a carbon source than nonadapted isolates. Furthermore, a mutation in a gene required for glycerol utilization impacts the production of several virulence factors in both acute and chronic isolates of P. aeruginosa. Taken together, the results suggest that interference with this metabolic pathway may have potential therapeutic benefits.
Journal of Microbiological Methods | 2009
Laura Silo-Suh; Brett Elmore; Dennis E. Ohman; Sang-Jin Suh
In order to facilitate genetic study of the opportunistic bacterial pathogen Pseudomonas aeruginosa, we isolated a conditional, temperature-sensitive plasmid origin of replication. We mutagenized the popular Pseudomonas stabilizing fragment from pRO1610 in vitro using the Taq thermostable DNA polymerase in a polymerase chain reaction (PCR). Out of approximately 23,000 potential clones, 48 temperature-sensitive mutants were isolated. One mutant was further characterized and the origin of replication was designated as mSF(ts1). The mutations that resulted in a temperature-sensitive phenotype in mSF(ts1) were localized to the 1.2 kb of minimum sequence required for replication in P. aeruginosa. The DNA sequence analysis revealed two mutations within the coding sequence of the Replication control (Rep) protein. Growth of P. aeruginosa carrying the temperature-sensitive plasmid at the non-permissive temperature of 42 degrees C resulted in loss of the plasmid by greater than 99.9999% of the cells after 16 h of growth. In order to facilitate its utilization, the mSF(ts1) was converted into a genetic cassette flanked by mirrored restriction endonuclease digestion sites of a pUC1918 derivative. We demonstrate utilization of the mSF(ts1) for genetic studies involving complementation and regeneration of a mutant in P. aeruginosa research.
Canadian Journal of Microbiology | 2016
Jessica Scoffield; Laura Silo-Suh
Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation.