Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Tamburello is active.

Publication


Featured researches published by Laura Tamburello.


Ecology | 2010

The seaweed Caulerpa racemosa on Mediterranean rocky reefs: from passenger to driver of ecological change

Fabio Bulleri; David Balata; Iacopo Bertocci; Laura Tamburello; Lisandro Benedetti-Cecchi

Disentangling the ecological effects of biological invasions from those of other human disturbances is crucial to understanding the mechanisms underlying ongoing biotic homogenization. We evaluated whether the exotic seaweed, Caulerpa racemosa, is the primary cause of degradation (i.e., responsible for the loss of canopy-formers and dominance by algal turfs) on Mediterranean rocky reefs, by experimentally removing the invader alone or the entire invaded assemblage. In addition, we assessed the effects of enhanced sedimentation on the survival and recovery of canopy-forming macroalgae at a relatively pristine location and how their loss affects the ability of C. racemosa to conquer space. C. racemosa did not invade dense canopy stands or influence their recovery in cleared plots. Competition with C. racemosa could not explain the rarity of canopy-forming species at degraded sites. Removing the assemblages invaded by C. racemosa and preventing reinvasion did not trigger the transition from algal turfs to canopies, but it enhanced the cover of morphologically complex erect macroalgae under some circumstances. Once established, C. racemosa, enhancing sediment accumulation, favors algal turfs over erect algal forms and enables them to monopolize space. Our results show that introduced species that rely on disturbance to establish can subsequently become the main drivers of ecological change.


PLOS ONE | 2010

Spatial relationships between polychaete assemblages and environmental variables over broad geographical scales

Lisandro Benedetti-Cecchi; Katrin Iken; Brenda Konar; Juan José Cruz-Motta; Ann Knowlton; Gerhard Pohle; Alberto Castelli; Laura Tamburello; Angela Mead; Thomas J. Trott; Patricia Miloslavich; Melisa Wong; Yoshihisa Shirayama; Claudio Lardicci; Gabriela Palomo; Elena Maggi

This study examined spatial relationships between rocky shore polychaete assemblages and environmental variables over broad geographical scales, using a database compiled within the Census of Marine Life NaGISA (Natural Geography In Shore Areas) research program. The database consisted of abundance measures of polychaetes classified at the genus and family levels for 74 and 93 sites, respectively, from nine geographic regions. We tested the general hypothesis that the set of environmental variables emerging as potentially important drivers of variation in polychaete assemblages depend on the spatial scale considered. Through Morans eigenvector maps we indentified three submodels reflecting spatial relationships among sampling sites at intercontinental (>10000 km), continental (1000–5000 km) and regional (20–500 km) scales. Using redundancy analysis we found that most environmental variables contributed to explain a large and significant proportion of variation of the intercontinental submodel both for genera and families (54% and 53%, respectively). A subset of these variables, organic pollution, inorganic pollution, primary productivity and nutrient contamination was also significantly related to spatial variation at the continental scale, explaining 25% and 32% of the variance at the genus and family levels, respectively. These variables should therefore be preferably considered when forecasting large-scale spatial patterns of polychaete assemblages in relation to ongoing or predicted changes in environmental conditions. None of the variables considered in this study were significantly related to the regional submodel.


Current Biology | 2015

Experimental Perturbations Modify the Performance of Early Warning Indicators of Regime Shift.

Lisandro Benedetti-Cecchi; Laura Tamburello; Elena Maggi; Fabio Bulleri

Ecosystems may shift abruptly between alternative states in response to environmental perturbations. Early warning indicators have been proposed to anticipate such regime shifts, but experimental field tests of their validity are rare. We exposed rocky intertidal algal canopies to a gradient of press perturbations and recorded the response of associated assemblages over 7 years. Reduced cover and biomass of algal canopies promoted the invasion of algal turfs, driving understory assemblages toward collapse upon total canopy removal. A dynamic model indicated the existence of a critical threshold separating the canopy- and turf-dominated states. We evaluated common indicators of regime shift as the system approached the threshold, including autocorrelation, SD, and skewness. These indicators captured changes in understory cover due to colonization of algal turfs. All indicators increased significantly as the system approached the critical threshold, in agreement with theoretical predictions. The performance of indicators changed when we superimposed a pulse disturbance on the press perturbation that amplified environmental noise. This treatment caused several experimental units to switch repeatedly between the canopy- and the turf-dominated state, resulting in a significant increase in overall variance of understory cover, a negligible effect on skewness and no effect on autocorrelation. Power analysis indicated that autocorrelation and SD were better suited at anticipating a regime shift under mild and strong fluctuations of the state variable, respectively. Our results suggest that regime shifts may be anticipated under a broad range of fluctuating conditions using the appropriate indicator.


Ecology | 2013

Reddened seascapes: experimentally induced shifts in 1/f spectra of spatial variability in rocky intertidal assemblages

Laura Tamburello; Fabio Bulleri; Iacopo Bertocci; Elena Maggi; Lisandro Benedetti-Cecchi

Ecological tests of 1/f-noise models have advanced our understanding of how environmental fluctuations affect population abundance and species distributions. Most empirical studies have been conducted under controlled laboratory conditions and have focused on individual drivers. We present the results of a four-year field experiment in which canopy presence/absence and the availability of primary space were manipulated as red-noise and white-noise spatial processes, respectively, to evaluate their separate and compounded effects on algal turf distribution in a rocky intertidal community. Algal turfs closely tracked spatial variation in canopy distribution, displaying a reddened spectrum of spatial variation. Surprisingly, white-noise clearings also induced a red-shift in turf distribution, a pattern that was related to a nonlinear relation between gap size and turf colonization. The two disturbances interacted antagonistically, dampening the red-shift of turf distribution. Our results provide evidence of experimentally induced shifts in the spectrum of a spatial variable under natural environmental conditions.


Oecologia | 2013

Habitat heterogeneity promotes the coexistence of exotic seaweeds

Laura Tamburello; Lisandro Benedetti-Cecchi; L. Masini; Fabio Bulleri

Despite the progressive accumulation of exotic species in natural communities, little effort has been devoted to elucidating the mechanisms underpinning the coexistence of invaders in environmentally and biologically heterogeneous systems. The exotic seaweeds, Asparagopsis taxiformis and Caulerpa racemosa, exhibit a segregated distribution on Mediterranean rocky reefs. A. taxiformis dominates assemblages in topographically complex habitats, but is virtually absent on homogenous platforms. In contrast, C. racemosa achieves extensive cover in both types of habitat. We assessed whether differences in their distribution were generated by biotic interactions (between invaders and/or between invaders and natives) or by environmental constraints. Three models were proposed to explain seaweed distribution patterns: (1) invaders inhibit one another; (2) native assemblages, differing between complex and simple habitats, prevent the establishment/spread of one invader, but not that of the other; and (3) environmental conditions regulate the establishment/persistence of the seaweeds in different habitats. We removed the dominant invader and resident assemblages in each type of habitat. Moreover, A. taxiformis thalli were transplanted into the habitat dominated by C. racemosa to establish whether its failure to colonize the simple habitat was due to the lack of propagules or post-recruitment mortality. C. racemosa spread in the complex habitat was not influenced by the removal of resident assemblages, but it was slightly enhanced by A. taxiformis removal. Neither C. racemosa removal nor that of resident assemblages promoted A. taxiformis colonization and survival in simple habitats. Our results suggest that heterogeneity in environmental conditions can promote invader coexistence by mitigating the effects of negative biotic interactions. Therefore, the accumulation of introduced species in native communities does not necessarily imply established invaders fostering further invasion.


PLOS ONE | 2011

Aspects of Benthic Decapod Diversity and Distribution from Rocky Nearshore Habitat at Geographically Widely Dispersed Sites

Gerhard Pohle; Katrin Iken; K. Robert Clarke; Thomas J. Trott; Brenda Konar; Juan José Cruz-Motta; Melisa Wong; Lisandro Benedetti-Cecchi; Angela Mead; Patricia Miloslavich; Rebecca Milne; Laura Tamburello; Ann Knowlton; Edward Kimani; Yoshihisa Shirayama

Relationships of diversity, distribution and abundance of benthic decapods in intertidal and shallow subtidal waters to 10 m depth are explored based on data obtained using a standardized protocol of globally-distributed samples. Results indicate that decapod species richness overall is low within the nearshore, typically ranging from one to six taxa per site (mean = 4.5). Regionally the Gulf of Alaska decapod crustacean community structure was distinguishable by depth, multivariate analysis indicating increasing change with depth, where assemblages of the high and mid tide, low tide and 1 m, and 5 and 10 m strata formed three distinct groups. Univariate analysis showed species richness increasing from the high intertidal zone to 1 m subtidally, with distinct depth preferences among the 23 species. A similar depth trend but with peak richness at 5 m was observed when all global data were combined. Analysis of latitudinal trends, confined by data limitations, was equivocal on a global scale. While significant latitudinal differences existed in community structure among ecoregions, a semi-linear trend in changing community structure from the Arctic to lower latitudes did not hold when including tropical results. Among boreal regions the Canadian Atlantic was relatively species poor compared to the Gulf of Alaska, whereas the Caribbean and Sea of Japan appeared to be species hot spots. While species poor, samples from the Canadian Atlantic were the most diverse at the higher infraordinal level. Linking 11 environmental variables available for all sites to the best fit family-based biotic pattern showed a significant relationship, with the single best explanatory variable being the level of organic pollution and the best combination overall being organic pollution and primary productivity. While data limitations restrict conclusions in a global context, results are seen as a first-cut contribution useful in generating discussion and more in-depth work in the still poorly understood field of biodiversity distribution.


PLOS ONE | 2015

Deterministic Factors Overwhelm Stochastic Environmental Fluctuations as Drivers of Jellyfish Outbreaks

Lisandro Benedetti-Cecchi; Antonio Canepa; Veronica Fuentes; Laura Tamburello; Jennifer E. Purcell; Stefano Piraino; Jason J. Roberts; Ferdinando Boero; Patrick N. Halpin

Jellyfish outbreaks are increasingly viewed as a deterministic response to escalating levels of environmental degradation and climate extremes. However, a comprehensive understanding of the influence of deterministic drivers and stochastic environmental variations favouring population renewal processes has remained elusive. This study quantifies the deterministic and stochastic components of environmental change that lead to outbreaks of the jellyfish Pelagia noctiluca in the Mediterranen Sea. Using data of jellyfish abundance collected at 241 sites along the Catalan coast from 2007 to 2010 we: (1) tested hypotheses about the influence of time-varying and spatial predictors of jellyfish outbreaks; (2) evaluated the relative importance of stochastic vs. deterministic forcing of outbreaks through the environmental bootstrap method; and (3) quantified return times of extreme events. Outbreaks were common in May and June and less likely in other summer months, which resulted in a negative relationship between outbreaks and SST. Cross- and along-shore advection by geostrophic flow were important concentrating forces of jellyfish, but most outbreaks occurred in the proximity of two canyons in the northern part of the study area. This result supported the recent hypothesis that canyons can funnel P. noctiluca blooms towards shore during upwelling. This can be a general, yet unappreciated mechanism leading to outbreaks of holoplanktonic jellyfish species. The environmental bootstrap indicated that stochastic environmental fluctuations have negligible effects on return times of outbreaks. Our analysis emphasized the importance of deterministic processes leading to jellyfish outbreaks compared to the stochastic component of environmental variation. A better understanding of how environmental drivers affect demographic and population processes in jellyfish species will increase the ability to anticipate jellyfish outbreaks in the future.


Environmental Research | 2013

Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy.

L. Fantozzi; R. Ferrara; F. Dini; Laura Tamburello; Nicola Pirrone; F. Sprovieri

Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000ngm(-2)h(-1)) were observed on bare soils during the hours of maximum insulation, while lower values (250ngm(-2)h(-1)) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500ngm(-2)h(-1), which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28°C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils.


Biological Invasions | 2018

Fragment quality and sediment organic loading regulate the survival of an invasive, clonal seaweed

Fabio Bulleri; Laura Tamburello; Antonio Pusceddu; Lisa Bonechi; Alessandro Cau; Davide Moccia; Paul E. Gribben

Although propagule pressure is recognized as an important determinant of invasion dynamics, the role of propagule quality (i.e. the physical condition of a propagule) has received little attention. In particular, how the performance of vegetative propagules differing in quality varies across heterogeneous landscapes is yet to be explored. Caulerpa cylindracea is a clonal, invasive seaweed, widely distributed in the Mediterranean. By means of a laboratory experiment, we investigated how variation in the quality of seaweed fragments (intact vs. frond-removal vs. rhizoid-removal) influenced their survival on control versus sediments enriched with detritus from the native seagrass, Posidonia oceanica. The survival of seaweed fragments was low on non-enriched sediments, irrespective of their characteristics. On enriched sediments, survival was high in control and rhizoid-removal fragments, but low in frond-removal fragments. Our study shows that both fragment quality and sediment characteristics influence the survival of C. cylindracea propagules and, hence, long-term spreading dynamics of this seaweed. More generally, it brings novel evidence showing that the effects of propagule quality on invasion success are context-dependent.


Scientific Reports | 2017

Nutrient Loading Fosters Seagrass Productivity under Ocean Acidification

Chiara Ravaglioli; Chiara Lauritano; Maria Cristina Buia; Elena Balestri; Antonella Capocchi; Debora Fontanini; Giuseppina Pardi; Laura Tamburello; Gabriele Procaccini; Fabio Bulleri

The effects of climate change are likely to be dependent on local settings. Nonetheless, the compounded effects of global and regional stressors remain poorly understood. Here, we used CO2 vents to assess how the effects of ocean acidification on the seagrass, Posidonia oceanica, and the associated epiphytic community can be modified by enhanced nutrient loading. P. oceanica at ambient and low pH sites was exposed to three nutrient levels for 16 months. The response of P. oceanica to experimental conditions was assessed by combining analyses of gene expression, plant growth, photosynthetic pigments and epiphyte loading. At low pH, nutrient addition fostered plant growth and the synthesis of photosynthetic pigments. Overexpression of nitrogen transporter genes following nutrient additions at low pH suggests enhanced nutrient uptake by the plant. In addition, enhanced nutrient levels reduced the expression of selected antioxidant genes in plants exposed to low pH and increased epiphyte cover at both ambient and low pH. Our results show that the effects of ocean acidification on P. oceanica depend upon local nutrient concentration. More generally, our findings suggest that taking into account local environmental settings will be crucial to advance our understanding of the effects of global stressors on marine systems.

Collaboration


Dive into the Laura Tamburello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiara Lauritano

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Gabriele Procaccini

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iacopo Bertocci

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Maria Cristina Buia

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Ann Knowlton

University of Alaska Fairbanks

View shared research outputs
Researchain Logo
Decentralizing Knowledge