Laura Valdés-Santiago
Instituto Politécnico Nacional
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Valdés-Santiago.
Frontiers in chemistry | 2014
Laura Valdés-Santiago; José Ruiz-Herrera
Fungi, as well as the rest of living organisms must deal with environmental challenges such as stressful stimuli. Fungi are excellent models to study the general mechanisms of the response to stress, because of their simple, but conserved, signal-transduction and metabolic pathways that are often equivalent to those present in other eukaryotic systems. A factor that has been demonstrated to be involved in these responses is polyamine metabolism, essentially of the three most common polyamines: putrescine, spermidine and spermine. The gathered evidences on this subject suggest that polyamines are able to control cellular signal transduction, as well as to modulate protein-protein interactions. In the present review, we will address the recent advances on the study of fungal metabolism of polyamines, ranging from mutant characterization to potential mechanism of action during different kinds of stress in selected fungal models.
Fems Yeast Research | 2010
Laura Valdés-Santiago; Doralinda Guzmán-de-Peña; José Ruiz-Herrera
In previous communications the essential role of spermidine in Ustilago maydis was demonstrated by means of the disruption of the genes encoding ornithine decarboxylase (ODC) and spermidine synthase (SPE). However, the assignation of specific roles to each polyamine in different cellular functions was not possible because the spermidine added to satisfy the auxotrophic requirement of odc/spe double mutants is partly back converted into putrescine. In this study, we have approached this problem through the disruption of the gene-encoding polyamine oxidase (PAO), required for the conversion of spermidine into putrescine, and the construction of odc/pao double mutants that were unable to synthesize putrescine by either ornithine decarboxylation or retroconversion from spermidine. Phenotypic analysis of the mutants provided evidence that putrescine is only an intermediary in spermidine biosynthesis, and has no direct role in cell growth, dimorphic transition, or any other vital function of U. maydis. Nevertheless, our results show that putrescine may play a role in the protection of U. maydis against salt and osmotic stress, and possibly virulence. Evidence was also obtained that the retroconversion of spermidine into putrescine is not essential for U. maydis growth but may be important for its survival under natural conditions.
Microbiology | 2012
Laura Valdés-Santiago; José Antonio Cervantes-Chávez; Robert Winkler; Claudia G. León-Ramírez; José Ruiz-Herrera
Synthesis of spermidine involves the action of two enzymes, spermidine synthase (Spe) and S-adenosylmethionine decarboxylase (Samdc). Previously we cloned and disrupted the gene encoding Spe as a first approach to unravel the biological function of spermidine in Ustilago maydis. With this background, the present study was designed to provide a better understanding of the role played by Samdc in the regulation of the synthesis of this polyamine. With this aim we proceeded to isolate and delete the gene encoding Samdc from U. maydis, and made a comparative analysis of the phenotypes of samdc and spe mutants. Both spe and samdc mutants behaved as spermidine auxotrophs, and were more sensitive than the wild-type strain to different stress conditions. However, the two mutants displayed significant differences: in contrast to spe mutants, samdc mutants were more sensitive to LiCl stress, high spermidine concentrations counteracted their dimorphic deficiency, and they were completely avirulent. It is suggested that these differences are possibly related to differences in exogenous spermidine uptake or the differential location of the respective enzymes in the cell. Alternatively, since samdc mutants accumulate higher levels of S-adenosylmethionine (SAM), whereas spe mutants accumulate decarboxylated SAM, the known opposite roles of these metabolites in the processes of methylation and differentiation offer an additional attractive hypothesis to explain the phenotypic differences of the two mutants, and provide insights into the additional roles of polyamine metabolism in the physiology of the cell.
Microbiology | 2016
José Antonio Cervantes-Chávez; Laura Valdés-Santiago; Guus Bakkeren; Edda Hurtado-Santiago; Claudia G. León-Ramírez; Edgardo Ulises Esquivel-Naranjo; Fidel Landeros-Jaime; Yolanda Rodríguez-Aza; José Ruiz-Herrera
Trehalose is an important disaccharide that can be found in bacteria, fungi, invertebrates and plants. In some Ascomycota fungal plant pathogens, the role of trehalose was recently studied and shown to be important for conferring protection against several environmental stresses and for virulence. In most of the fungi studied, two enzymes are involved in the synthesis of trehalose: trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2). To study the role of trehalose in virulence and stress response in the Basidiomycota maize pathogen Ustilago maydis, Δtps2 deletion mutants were constructed. These mutants did not produce trehalose as confirmed by HPLC analysis, showing that the single gene disruption impaired its biosynthesis. The mutants displayed increased sensitivity to oxidative, heat, acid, ionic and osmotic stresses as compared to the wild-type strains. Virulence of Δtps2 mutants to maize plants was extremely reduced compared to wild-type strains, possibly due to reduced capability to deal with the hostile host environment. The phenotypic traits displayed by Δtps2 strains were fully restored to wild-type levels when complemented with the endogenous UmTPS2 gene, or a chimeric construct having the Saccharomyces cerevisiae TPS2 ORF. This report demonstrates the presence of a single biosynthetic pathway for trehalose, and its importance for virulence in this model Basidiomycota plant pathogen.
Fems Microbiology Letters | 2010
Claudia G. León-Ramírez; Laura Valdés-Santiago; Eduardo Campos-Góngora; Lucila Ortiz-Castellanos; Elva T. Aréchiga-Carvajal; José Ruiz-Herrera
By means of an in silico analysis, we demonstrated that a previously described chimeric gene (Spe-Sdh) encoding spermidine synthase, a key enzyme involved in the synthesis of polyamines, and saccharopine dehydrogenase, an enzyme involved in lysine synthesis in fungi, were present exclusively in members of all Basidiomycota subphyla, but not in any other group of living organisms. We used this feature to design degenerated primers to amplify a specific fragment of the Spe-Sdh gene by PCR, as a tool to unequivocally identify Basidiomycota isolates. The specificity of this procedure was tested using different fungal species. As expected, positive results were obtained only with Basidiomycota species, whereas no amplification was achieved with species belonging to other fungal phyla.
Mycology | 2015
Dora Linda Guzmán-de-Peña; Ana María Correa-González; Laura Valdés-Santiago; Claudia G. León-Ramírez; Silvia Valdés-Rodríguez
The inhibitory effect of recombinant amaranth cystatin (AhCPI) on the spore germination and growth of the mycotoxigenic fungus Aspergillus parasiticus and Aspergillus niger was investigated. AhCPI showed a concentration-dependent antifungal activity against both fungi. Differential effects were observed when fungi were treated with cystatin in two developmental stages. When AhCPI was added to young mycelium cultures of A. niger, it had a dramatic effect on mycelial growth compared with old mycelium cultures. On the contrary, there was no differential effect of AhCPI addition to either old or young mycelium of A. parasiticus. Furthermore, electron microscopic observations showed that cystatin caused important effects at the level of cell morphology and organelle integrity of both fungi. Additionally, A. parasiticus spores treated with AhCPI presented sensitivity to oxidative, osmotic and ionic stresses; in opposition, under same conditions, A. niger did not show sensitivity to any stressful agent. These results suggest that AhCPI antifungal activity might be related with damage to cell integrity, affecting the survival of the fungi. In addition, our evidences showed that fungal species respond dissimilarly to cystatin; however, such disparities can be used to the control of unwanted fungi.
Fems Yeast Research | 2009
Laura Valdés-Santiago; José A. Cervantes-Chávez; José Ruiz-Herrera
Salud Publica De Mexico | 2015
Abigail Moreno-Pedraza; Laura Valdés-Santiago; Laura Josefina Hernández-Valadez; Alicia Rodríguez-Sixtos Higuera; Robert Winkler; Dora Linda Guzmán-de Peña
Archive | 2015
Laura Valdés-Santiago; José Ruiz-Herrera
Journal of Agricultural and Food Chemistry | 2016
María Karina Manzo-Valencia; Laura Valdés-Santiago; Lino Sánchez-Segura; Dora Linda Guzmán-de-Peña