Laura Vilarinho
Intelligence and National Security Alliance
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura Vilarinho.
Neurology | 2006
Saadet Mercimek-Mahmutoglu; Sylvia Stoeckler-Ipsiroglu; A. Adami; Re Appleton; H. Caldeira Araújo; M. Duran; R. Ensenauer; E. Fernandez-Alvarez; Paula Garcia; C. Grolik; Chike B. Item; Vincenzo Leuzzi; Iris Marquardt; A. Mühl; R. A. Saelke-Kellermann; Gajja S. Salomons; Andreas Schulze; Robert Surtees; M.S. van der Knaap; R. Vasconcelos; Nanda M. Verhoeven; Laura Vilarinho; Ekkehard Wilichowski; C. Jakobs
Background: Guanidinoactetate methyltransferase (GAMT) deficiency is an autosomal recessive disorder of creatine synthesis. The authors analyzed clinical, biochemical, and molecular findings in 27 patients. Methods: The authors collected data from questionnaires and literature reports. A score including degree of intellectual disability, epileptic seizures, and movement disorder was developed and used to classify clinical phenotype as severe, moderate, or mild. Score and biochemical data were assessed before and during treatment with oral creatine substitution alone or with additional dietary arginine restriction and ornithine supplementation. Results: Intellectual disability, epileptic seizures, guanidinoacetate accumulation in body fluids, and deficiency of brain creatine were common in all 27 patients. Twelve patients had severe, 12 patients had moderate, and three patients had mild clinical phenotype. Twenty-one of 27 (78%) patients had severe intellectual disability (estimated IQ 20 to 34). There was no obvious correlation between severity of the clinical phenotype, guanidinoacetate accumulation in body fluids, and GAMT mutations. Treatment resulted in almost normalized cerebral creatine levels, reduced guanidinoacetate accumulation, and in improvement of epilepsy and movement disorder, whereas the degree of intellectual disability remained unchanged. Conclusion: Guanidinoactetate methyltransferase deficiency should be considered in patients with unexplained intellectual disability, and urinary guanidinoacetate should be determined as an initial diagnostic approach.
Neurology | 2001
Rosalba Carrozzo; Alessandra Tessa; M.E. Vazquez-Memije; Fiorella Piemonte; Clarice Patrono; Alessandro Malandrini; Carlo Dionisi-Vici; Laura Vilarinho; Marcello Villanova; H. Schagger; Antonio Federico; Enrico Bertini; Filippo M. Santorelli
The authors identified a novel mtDNA mutation (T9176G) in the ATPase 6 gene in a family in which a 10-year-old girl had a severe neurodegenerative disorder, her elder sister had died of Leigh syndrome (LS), and a maternal uncle had a spinocerebellar disorder. Biochemical studies disclosed a reduced rate of ATP synthesis in skin fibroblast cultures from the proposita as the likely explanation of her severe illness. The findings expand the genetic variants associated with LS.
European Journal of Human Genetics | 2001
Alessandro Tessa; Aldo Giannotti; L. Tieri; Laura Vilarinho; Giacomo Marotta; Filippo M. Santorelli
Hearing loss is a relatively frequent defect in children with a genetic or predisposition basis in about 50% of cases. Mitochondrial DNA (mtDNA)-associated disorder often present with sensorineural hearing loss (SNHL) either in isolation or as a part of a multisystem disorder in adults but the frequency in pediatric cases is unknown. We analysed deafness-related mtDNA mutations in 80 deaf children to assess the relative frequency of alterations in childhood-onset SNHL. In 16 patients in whom maternal inheritance was possible, we screened for new mutations likely to affect mitochondrial protein synthesis. In one child we detected a novel mutation (T1095C) in the 12S rRNA gene. This mutation fulfils the suggested criteria for definition of a disease-related nucleotide variant. No mutations were found in other patients. Although we cannot exclude the presence of still undefined new mtDNA mutations, our data suggest that mtDNA defect are not common in childhood-onset SNHL.
Molecular Genetics and Metabolism | 2008
Célia Nogueira; Chiara Aiello; Roberto Cerone; Esmeralda Martins; Ubaldo Caruso; Isabella Moroni; Cristiano Rizzo; Luísa Diogo; Elisa Leão; Fernando Kok; Federica Deodato; Maria Cristina Schiaffino; Sara Boenzi; Olivier Danhaive; Clara Barbot; Sílvia Sequeira; Mattia Locatelli; Filippo M. Santorelli; Graziella Uziel; Laura Vilarinho; Carlo Dionisi-Vici
Methylmalonic aciduria (MMA) and homocystinuria, cblC type (MIM 277400) is the most frequent inborn error of vitamin B(12). The recent identification of the disease gene, MMACHC, has permitted preliminary genotype-phenotype correlations. We studied 24 Italian and 17 Portuguese patients with cblC defect to illustrate the spectrum of mutations in a southern European population and discuss the impact that mutation identification has on routine diagnostic procedures. Since the metabolic defect raises the serum levels of homocysteine, we also tested if variants in MTHFR-playing a key role in homocysteine remethylation pathway-could act as genetic modifier in cblC defect. We found that the c.271dupA (accounting for 55% of the MMACH alleles in our cohort) followed by c.394C>T (16%) and c.331C>T (9%) were the most frequent mutations. In our study we also identified a novel mutation (c.544T>C). On the other hand, the MTHFR genotype did not appear to influence age at onset, the clinical phenotype and outcome of patients with cblC defect. This study shows that mutation screening for the most common MMACH mutations occurring in early-onset forms (c.271dupA and c.331C>T) seems to have a high diagnostic yield in a southern European population with cblC defect. Although the identification of the gene defect per se does not predict completely time and severity of disease appearance, our data corroborate the importance of a molecular testing to offer accurate prenatal diagnosis to couples at high risk of having affected children.
Neuromuscular Disorders | 2006
Miguel Gago; Maria José Rosas; Joana Guimarães; Mariana Ferreira; Laura Vilarinho; Lígia Castro; Stirling Carpenter
Sensory ataxia with neuropathy, dysarthria and ophthalmoparesis represent the clinical triad of SANDO, a specific mitochondrial phenotype first reported in 1997 in association with multiple mitochondrial DNA deletions and mutations in POLG1 or more rarely in the C10orf2 (twinkle-helicase) gene. We report a 44-year-old man with SANDO who harboured two novel mutations (P648R/R807C) in the POLG1 gene.
Neurogenetics | 2011
Mariana Ferreira; Alessandra Torraco; Teresa Rizza; Fabiana Fattori; Maria Chiara Meschini; Cinzia Castana; Nancy E. Go; Frank E. Nargang; Margarida Duarte; Fiorella Piemonte; Carlo Dionisi-Vici; Arnaldo Videira; Laura Vilarinho; Filippo M. Santorelli; Rosalba Carrozzo; Enrico Bertini
We present clinical, neuroimaging, and molecular data on the identification of a new homozygous c.1783A>G (p.Thr595Ala) mutation in NDUFS1 in two inbred siblings with isolated complex I deficiency associated to a progressive cavitating leukoencephalopathy, a clinical and neuroradiological entity originally related to unknown defects of the mitochondrial energy metabolism. In both sibs, the muscle biopsy showed severe reduction of complex I enzyme activity, which was not obvious in fibroblasts. We also observed complex I dysfunction in a Neurospora crassa model of the disease, obtained by insertional mutagenesis, and in patient fibroblasts grown in galactose. Altogether, these results indicate that the NDUFS1 mutation is responsible for the disease and complex I deficiency. Clinical presentation of complex I defect is heterogeneous and includes an ample array of clinical phenotypes. Expanding the number of allelic variants in NDUFS1, our findings also contribute to a better understanding on the function of complex I.
Neurogenetics | 2013
Célia Nogueira; José Barros; Maria José Sá; Luísa Azevedo; Ricardo Taipa; Alessandra Torraco; Maria Chiara Meschini; Daniela Verrigni; Claudia Nesti; Teresa Rizza; João Teixeira; Rosalba Carrozzo; Manuel Melo Pires; Laura Vilarinho; Filippo M. Santorelli
Complex III of the mitochondrial respiratory chain (CIII) catalyzes transfer of electrons from reduced coenzyme Q to cytochrome c. Low biochemical activity of CIII is not a frequent etiology in disorders of oxidative metabolism and is genetically heterogeneous. Recently, mutations in the human tetratricopeptide 19 gene (TTC19) have been involved in the etiology of CIII deficiency through impaired assembly of the holocomplex. We investigated a consanguineous Portuguese family where four siblings had reduced enzymatic activity of CIII in muscle and harbored a novel homozygous mutation in TTC19. The clinical phenotype in the four sibs was consistent with severe olivo–ponto–cerebellar atrophy, although their age at onset differed slightly. Interestingly, three patients also presented progressive psychosis. The mutation resulted in almost complete absence of TTC19 protein, defective assembly of CIII in muscle, and enhanced production of reactive oxygen species in cultured skin fibroblasts. Our findings add to the array of mutations in TTC19, corroborate the notion of genotype/phenotype variability in mitochondrial encephalomyopathies even within a single family, and indicate that psychiatric manifestations are a further presentation of low CIII.
Molecular Genetics and Metabolism | 2008
Sofia Quental; Sandra Macedo-Ribeiro; Raquel Matos; Laura Vilarinho; Esmeralda Martins; Elisa Leão Teles; Esmeralda Rodrigues; Luísa Diogo; Paula Garcia; Filomena Eusébio; Ana Gaspar; Sílvia Sequeira; Fátima Furtado; Isabel Lança; António Amorim; Maria João Prata
Maple syrup urine disease (MSUD) is an autosomal recessive disorder, caused by the defective function of the branched-chain alpha-ketoacid dehydrogenase complex (BCKD). BCKD is a mitochondrial complex, encoded by four nuclear genes (BCKDHA, BCKDHB, DBT and DLD), involved in the metabolism of branched-chain amino acids (BCAAs). Since the MSUD mutational spectrum has not been previously assessed in Portugal, in this study we present the molecular characterization of 30 MSUD Portuguese patients. Seventeen putative mutations have been identified (six in BCKDHA, five in BCKDHB and six in DBT); seven of them are here described for the first time. The most common mutation identified was a C deletion in BCKDHA gene (c.117delC; p.R40GfsX23), already reported in the Spanish population. Interestingly, it was found in all patients of a Gypsy community from South of the country, so a founder effect is probably responsible for the high incidence of the disease in this community. Structural models of MSUD missense mutations have been performed to understand their pathogenic effect, in order to elucidate and often to predict the severity of a mutation clinical consequence.
Journal of Human Genetics | 2006
Roser Urreizti; Carla Gabriela Asteggiano; Marta Bermúdez; Alfonso Córdoba; Mariana Szlago; Carola Grosso; Raquel Dodelson de Kremer; Laura Vilarinho; Vania D’Almeida; Mercedes Martínez-Pardo; Luis Peña-Quintana; Jaime Dalmau; Jaime Bernal; Ignacio Briceño; María Luz Couce; Marga Rodés; M. A. Vilaseca; Susana Balcells; Daniel Grinberg
In this article, one of the novel mutations, c.208_209+ 8del10, was incorrectly given as c.69_70+8del10. It corresponds to patient 64 in Table 4.
Journal of Inherited Metabolic Disease | 2003
M. A. Vilaseca; Laura Vilarinho; P. Zavadakova; E. Vela; E. Cleto; M. Pineda; E. Coimbra; Terttu Suormala; Brian Fowler; Viktor Kozich
Patients with the cblE type of homocystinuria usually present with megaloblastic anaemia, feeding difficulties, developmental delay and cerebral atrophy. We present a 14-year-old Spanish girl (patient 1) and a 10-year-old Portuguese boy (patient 2) with cblE disease and mild clinical phenotype. The main clinical feature in both patients was persistent megaloblastic anaemia observed at 3 years and at 2 months of age, respectively. Diagnosis was made at the ages of 9 and 7 years, respectively, owing to persistent macrocytosis despite cobalamin treatment. Plasma total homocysteine values at diagnosis were 91 μmol/L and 44 μmol/L, respectively, in the absence of methylmalonic aciduria. Neurological and neurophysiological examinations were normal except for two small lesions on brain MRI suggestive of ischaemia and slight abnormalities in somatosensitive evoked potentials. Enzymatic analysis, complementation studies and clearly reduced production of methylcobalamin from 57Co-labelled cyanocobalamin indicated functional methionine synthase reductase deficiency due to the cblE defect. Genetic analysis confirmed that both patients are homozygous for a novel mutation c.1361C > T in the methionine synthase reductase gene leading to a replacement of serine by leucine (S454L) in a highly conserved FAD-binding domain. We propose that homozygosity for this novel mutation may be associated with a mild phenotype, although its long-term deleterious neurological consequences remain possible. Furthermore, we propose that even in the absence of apparent neurological involvement, total homocysteine should be investigated in patients with resistant megaloblastic anaemia to detect possible mild forms of the cblE type of homocystinuria.