Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Villasana is active.

Publication


Featured researches published by Laura Villasana.


Radiation Research | 2006

Sex-and APOE isoform-dependent effects of radiation on cognitive function

Laura Villasana; Summer F. Acevedo; Cara Poage; Jacob Raber

Abstract Villasana, L., Acevedo, S., Poage, C. and Raber, J. Sex- and APOE Isoform-Dependent Effects of Radiation on Cognitive Function. Radiat. Res. 166, 883–891 (2006). Clinical irradiation of the brain induces hippocampus-dependent cognitive impairments in some but not all individuals, suggesting the involvement of genetic risk factors. Deficiency of apolipoprotein E (APOE), which is important for the metabolism and redistribution of lipoproteins and cholesterol, increases behavioral impairments after irradiation, supporting a protective role for APOE against radiation-induced cognitive injury. Compared to APOE3, APOE4 increases while APOE2 decreases the risk of developing age-related cognitive decline and Alzheimers disease, particularly in women. To determine the potential effects of APOE isoform and sex on radiation-induced cognitive impairments, we irradiated 2-month-old male and female APOE2, APOE3 and APOE4 mice and assessed their cognitive performance 3 months later. When hippocampus-dependent spatial learning and memory were assessed in the water maze, sham-irradiated female APOE2, APOE3 and APOE4 and irradiated female APOE2 mice showed spatial memory retention, but irradiated female APOE3 and APOE4 mice did not. Compared to sham-irradiated female APOE4 mice, irradiated female APOE4 mice also required more trials to reach criterion in the hippocampus-dependent passive avoidance test. Radiation had no effects on water maze or passive avoidance learning and memory of male APOE2, APOE3 or APOE4 mice, indicating that the effects of radiation on cognitive performance are dependent on sex- and APOE isoform.


Hippocampus | 2011

Irradiation Enhances Hippocampus-Dependent Cognition in Mice Deficient in Extracellular Superoxide Dismutase

Jacob Raber; Laura Villasana; Jenna Rosenberg; Yani Zou; Ting-Ting Huang; John R. Fike

The effects of ionizing irradiation on the brain are associated with oxidative stress. While oxidative stress following irradiation is generally viewed as detrimental for hippocampal function, it might have beneficial effects as part of an adaptive or preconditioning response to a subsequent challenge. Here we show that in contrast to what is seen in wild‐type mice, irradiation enhances hippocampus‐ dependent cognitive measures in mice lacking extracellular superoxide dismutase. These outcomes were associated with genotype‐dependent effects on measures of oxidative stress. When cortices and hippocampi were analyzed for nitrotyrosine formation as an index of oxidative stress, the levels were chronically elevated in mice lacking extracellular superoxide dismutase. However, irradiation caused a greater increase in nitrotyrosine levels in wild‐type mice than mice lacking extracellular superoxide dismutase. These paradoxical genotype‐dependent effects of irradiation on measures of oxidative stress and cognitive function underscore potential beneficial effects associated with chronic oxidative stress if it exists prior to a secondary insult such as irradiation.


Hippocampus | 2009

Sex-dependent effects of 56Fe irradiation on contextual fear conditioning in C57BL/6J mice.

Laura Villasana; Jenna Rosenberg; Jacob Raber

Effects of irradiation on hippocampal function have been mostly studied in male rodents and relatively little is known about potential effects of irradiation on hippocampal function in female rodents. Moreover, although the long‐term effects of clinical radiation on cognitive function have been well established, the effects of other forms of irradiation, such as high charged, high energy radiation (HZE particles) that astronauts encounter during space missions have not been well characterized. In this study we compared the effects of 56Fe irradiation on fear conditioning in C57BL/6J female and male mice. Hippocampus‐dependent contextual fear conditioning was impaired in female mice but improved in male mice following 56Fe irradiation. Such impairment was not seen for hippocampus‐independent cued fear conditioning. Thus, the effects of 56Fe irradiation on hippocampus‐dependent contextual fear conditioning are critically modulated by sex.


Behavioural Brain Research | 2011

Opposing roles of mGluR8 in measures of anxiety involving non-social and social challenges.

Robert M. Duvoisin; Laura Villasana; Matthew J. Davis; Danny G. Winder; Jacob Raber

Metabotropic glutamate receptors (mGluRs) modulate glutamatergic and GABAergic neurotransmission. mGluR8, a member of group III receptors, is generally located presynaptically where it regulates neurotransmitter release. Previously we reported higher measures of anxiety in 6- and 12-month-old mGluR8(-/-) male mice than age- and sex-matched wild-type mice and that acute pharmacological stimulation with the mGluR8 agonist (S)-3,4,-dicarboxyphenylglycine (DCPG) or the Positive Allosteric Modulator (PAM) AZ12216052 reduced measures of anxiety in wild-type mice. As in humans and animals, ageing is associated with enhanced measures of anxiety following non-social and social challenges, increased understanding of these measures and how to potentially modulate them is particularly important in the elderly. Here we determined whether the effects of AZ12216052 on measures of anxiety are mediated by mGluR8 using 24-month-old mGluR8(-/-) and wild-type male mice. AZ12216052 also reduced measures of anxiety in the elevated zero maze and the acoustic startle response in mGluR8(-/-) mice. The remaining anxiolytic effects of AZ12216052 in mGluR8(-/-) mice might involve mGluR4, as the mGluR4 PAM VU 0155041 also reduced measures of anxiety in wild-type mice. In contrast, mGluR8(-/-) mice show enhanced social interaction but AZ12216052 does not affect social interaction in wild-type mice. Thus, while mGluR8 is an attractive target to modulate measures of anxiety and social interaction, the effects of AZ12216052 on measures of anxiety likely also involve receptors other than mGluR8.


Radiation Research | 2011

Effects of 56Fe-Particle Cranial Radiation on Hippocampus-Dependent Cognition Depend on the Salience of the Environmental Stimuli

Jacob Raber; Susanna Rosi; Ayanabha Chakraborti; Kelly Fishman; Catherine Dayger; Matthew J. Davis; Laura Villasana; John R. Fike

Ionizing radiation reduces the numbers of neurons expressing activity-regulated cytoskeleton-associated protein (Arc) in the hippocampal dentate gyrus (DG). It is currently unclear if that change relates to cognitive function. We assessed the effects of 1 Gy of head-only 56Fe-particle irradiation on hippocampus-dependent and hippocampus-independent fear conditioning and determined how those changes related to Arc expression within the DG. Irradiated mice that did not receive tone-shock pairings on day 1 showed less freezing in the same context on a second day and a lower fraction of Arc-expressing neurons in the free (lower) blade of the DG than sham-irradiated mice. Those data suggested reduced hippocampus-dependent spatial habituation learning. Changes in Arc expression in the free blade correlated positively with freezing in mice that did not receive tone-shock pairings. However, irradiated mice that did receive tone-shock pairings showed enhanced contextual freezing but a reduced percentage of Arc-expressing neurons in the enclosed (upper) blade. Changes in Arc expression correlated negatively with freezing in mice that received tone-shock pairings. In animals receiving cued fear conditioning, radiation did not affect cognitive performance or the fractions of Arc-expressing neurons. While the relationship between Arc expression and cognitive performance is complex, our data suggest that radiation effects on hippocampus-dependent cognition might depend on the prominence (salience) of environmental stimuli and blade-specific Arc expression.


International Journal of Radiation Oncology Biology Physics | 2011

Long-Term Effects of 56Fe Irradiation on Spatial Memory of Mice: Role of Sex and Apolipoprotein E Isoform

Laura Villasana; Theodore S. Benice; Jacob Raber

PURPOSE To assess whether the effects of cranial (56)Fe irradiation on the spatial memory of mice in the water maze are sex and apolipoprotein E (apoE) isoform dependent and whether radiation-induced changes in spatial memory are associated with changes in the dendritic marker microtubule-associated protein 2 (MAP-2) and the presynaptic marker synaptophysin. METHODS AND MATERIALS Two-month-old male and female mice expressing human apoE3 or apoE4 received either a 3-Gy dose of cranial (56)Fe irradiation (600 MeV/amu) or sham irradiation. Mice were tested in a water maze task 13 months later to assess effects of irradiation on spatial memory retention. After behavioral testing, the brain tissues of these mice were analyzed for synaptophysin and MAP-2 immunoreactivity. RESULTS After irradiation, spatial memory retention of apoE3 female, but not male, mice was impaired. A general genotype deficit in spatial memory was observed in sham-irradiated apoE4 mice. Strikingly, irradiation prevented this genotype deficit in apoE4 male mice. A similar but nonsignificant trend was observed in apoE4 female mice. Although there was no change in MAP-2 immunoreactivity after irradiation, synaptophysin immunoreactivity was increased in irradiated female mice, independent of genotype. CONCLUSIONS The effects of (56)Fe irradiation on the spatial memory retention of mice are critically influenced by sex, and the direction of these effects is influenced by apoE isoform. Although in female mice synaptophysin immunoreactivity provides a sensitive marker for effects of irradiation, it cannot explain the apoE genotype-dependent effects of irradiation on the spatial memory retention of the mice.


Pharmacology, Biochemistry and Behavior | 2013

Effects of alpha-lipoic acid on associative and spatial memory of sham-irradiated and 56Fe-irradiated C57BL/6J male mice

Laura Villasana; Rosalind A. Rosenthal; Susan R. Doctrow; Timothy Pfankuch; Damian G. Zuloaga; Alexandra MacColl Garfinkel; Jacob Raber

Cranial irradiation with (56)Fe, a form of space radiation, causes hippocampus-dependent cognitive changes. (56)Fe irradiation also increases reactive oxygen species (ROS) levels, which may contribute to these changes. Therefore, we investigated the effects of the antioxidant alpha lipoic acid (ALA) on cognition following sham-irradiation and irradiation. Male mice were irradiated (brain only) with (56)Fe (3 Gy) or sham-irradiated at 6-9 months of age. Half of the mice remained fed a regular chow and the other half of the mice were fed a caloric-matched diet containing ALA starting two-weeks prior to irradiation and throughout cognitive testing. Following cognitive testing, levels of 3-nitrotyrosine (3NT), a marker of oxidative protein stress, and levels of microtubule-associated protein (MAP-2), a dendritic protein important for cognition, were assessed using immunohistochemistry and confocal microscopy. ALA prevented radiation-induced impairments in spatial memory retention in the hippocampal and cortical dependent water maze probe trials following reversal learning. However, in sham-irradiated mice, ALA treatment impaired cortical-dependent novel object recognition and amygdala-dependent cued fear conditioning. There was a trend towards lower 3NT levels in irradiated mice receiving a diet containing ALA than irradiated mice receiving a regular diet. In the hippocampal dentate gyrus of mice on regular diet, irradiated mice had higher levels of MAP-2 immunoreactivity than sham-irradiated mice. Thus, ALA might have differential effects on the brain under normal physiological conditions and those involving environmental challenges such as cranial irradiation.


Behavioural Brain Research | 2010

Sex-Dependent Cognitive Phenotype of Mice Lacking mGluR8

Robert M. Duvoisin; Laura Villasana; Timothy Pfankuch; Jacob Raber

Metabotropic glutamate receptors (mGluRs) modulate glutamatergic and GABAergic neurotransmission. mGluR8 is generally located presynaptically where it regulates neurotransmitter release. Previously we reported that 6-month-old mGluR8(-/-) male mice show higher measures of anxiety in anxiety tests involving avoidable anxiety-provoking stimuli than age-matched wild-type male mice. In wild-type mice, middle-aged females and males show higher measures of anxiety in such tests and reduced spatial learning than young adults. In this study we evaluated in middle-aged mice the effects of mGluR8 deficiency on measures of anxiety involving avoidable and unavoidable anxiety-provoking stimuli and on cognitive performance and whether these effects are sex-dependent. Female and male mGluR8(-/-) mice showed increased measures of anxiety in the open field. In contrast, male mGluR8(-/-) mice showed increased but female mGluR8(-/-) mice decreased measures of anxiety in the elevated plus maze and the acoustic startle response. mGluR8 deficiency impaired novel location recognition and spatial memory retention in the water maze. The impairment in spatial memory retention in the water maze, but not in novel location recognition, was more pronounced in female than male mice. Thus, potential sex differences in the therapeutic effects of mGluR8 modulation to reduce measures of anxiety and improve cognitive performance should be carefully considered.


Behavioural Brain Research | 2013

ApoE isoform modulates effects of cranial 56Fe irradiation on spatial learning and memory in the water maze

Lauren A. Yeiser; Laura Villasana; Jacob Raber

Apolipoprotein E, which plays an important role in lipid transport and metabolism and neuronal repair, might modulate the CNS risk following (56)Fe irradiation exposure during space missions. In this study, we investigated this risk by behavioral and cognitive testing male E2, E3, and E4 mice 3 months following cranial (56)Fe irradiation. In the open field, mice irradiated with 2 Gy showed higher activity levels than sham-irradiated mice or mice irradiated with 1 Gy. In addition, E2 mice showed higher activity and lower measures of anxiety than E3 and E4 mice in the open field and elevated zero maze. During hidden platform training, sham-irradiated mice showed most robust learning, 1 Gy irradiated mice reduced learning, and 2 Gy irradiated mice no improvement over the four sessions. In the water maze probe trials, sham-irradiated E2, E3, and E4 mice and E2 and E4 mice irradiated with 1 Gy showed spatial memory retention, but E3 mice irradiated with 1 Gy, and E2, E3, and E4 mice irradiated with 2 Gy did not. Thus, cranial (56)Fe irradiation increases activity levels in the open field and impairs spatial learning and memory in the water maze. E3 mice are more susceptible than E2 or E4 mice to impairments in spatial memory retention in the water maze, indicating that apoE isoform modulates the CNS risk following space missions.


eNeuro | 2015

Functional Integration of Adult-Born Hippocampal Neurons after Traumatic Brain Injury

Laura Villasana; Kristine N. Kim; Gary L. Westbrook; Eric Schnell

Abstract Traumatic brain injury (TBI) increases hippocampal neurogenesis, which may contribute to cognitive recovery after injury. However, it is unknown whether TBI-induced adult-born neurons mature normally and functionally integrate into the hippocampal network. We assessed the generation, morphology, and synaptic integration of new hippocampal neurons after a controlled cortical impact (CCI) injury model of TBI. To label TBI-induced newborn neurons, we used 2-month-old POMC-EGFP mice, which transiently and specifically express EGFP in immature hippocampal neurons, and doublecortin-CreERT2 transgenic mice crossed with Rosa26-CAG-tdTomato reporter mice, to permanently pulse-label a cohort of adult-born hippocampal neurons. TBI increased the generation, outward migration, and dendritic complexity of neurons born during post-traumatic neurogenesis. Cells born after TBI had profound alterations in their dendritic structure, with increased dendritic branching proximal to the soma and widely splayed dendritic branches. These changes were apparent during early dendritic outgrowth and persisted as these cells matured. Whole-cell recordings from neurons generated during post-traumatic neurogenesis demonstrate that they are excitable and functionally integrate into the hippocampal circuit. However, despite their dramatic morphologic abnormalities, we found no differences in the rate of their electrophysiological maturation, or their overall degree of synaptic integration when compared to age-matched adult-born cells from sham mice. Our results suggest that cells born after TBI participate in information processing, and receive an apparently normal balance of excitatory and inhibitory inputs. However, TBI-induced changes in their anatomic localization and dendritic projection patterns could result in maladaptive network properties.

Collaboration


Dive into the Laura Villasana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Fike

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge