Laura W. Dillon
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura W. Dillon.
Current Genomics | 2010
Laura W. Dillon; Allison A. Burrow; Yuh-Hwa Wang
Human chromosomal fragile sites are specific genomic regions which exhibit gaps or breaks on metaphase chromosomes following conditions of partial replication stress. Fragile sites often coincide with genes that are frequently rearranged or deleted in human cancers, with over half of cancer-specific translocations containing breakpoints within fragile sites. But until recently, little direct evidence existed linking fragile site breakage to the formation of cancer-causing chromosomal aberrations. Studies have revealed that DNA breakage at fragile sites can induce formation of RET/PTC rearrangements, and deletions within the FHIT gene, resembling those observed in human tumors. These findings demonstrate the important role of fragile sites in cancer development, suggesting that a better understanding of the molecular basis of fragile site instability is crucial to insights in carcinogenesis. It is hypothesized that under conditions of replication stress, stable secondary structures form at fragile sites and stall replication fork progress, ultimately resulting in DNA breaks. A recent study examining an FRA16B fragment confirmed the formation of secondary structure and DNA polymerase stalling within this sequence in vitro, as well as reduced replication efficiency and increased instability in human cells. Polymerase stalling during synthesis of FRA16D has also been demonstrated. The ATR DNA damage checkpoint pathway plays a critical role in maintaining stability at fragile sites. Recent findings have confirmed binding of the ATR protein to three regions of FRA3B under conditions of mild replication stress. This review will discuss recent advances made in understanding the role and mechanism of fragile sites in cancer development.
Oncogene | 2010
Manoj Gandhi; Laura W. Dillon; Sreemanta Pramanik; Yuri E. Nikiforov; Yuh-Hwa Wang
Human chromosomal fragile sites are regions of the genome that are prone to DNA breakage, and are classified as common or rare, depending on their frequency in the population. Common fragile sites frequently coincide with the location of genes involved in carcinogenic chromosomal translocations, suggesting their role in cancer formation. However, there has been no direct evidence linking breakage at fragile sites to the formation of a cancer-specific translocation. Here, we studied the involvement of fragile sites in the formation of RET/PTC rearrangements, which are frequently found in papillary thyroid carcinoma (PTC). These rearrangements are commonly associated with radiation exposure; however, most of the tumors found in adults are not linked to radiation. In this study, we provide structural and biochemical evidence that the RET, CCDC6 and NCOA4 genes participating in two major types of RET/PTC rearrangements, are located in common fragile sites FRA10C and FRA10G, and undergo DNA breakage after exposure to fragile site-inducing chemicals. Moreover, exposure of human thyroid cells to these chemicals results in the formation of cancer-specific RET/PTC rearrangements. These results provide the direct evidence for the involvement of chromosomal fragile sites in the generation of cancer-specific rearrangements in human cells.
Human Molecular Genetics | 2013
Laura W. Dillon; Levi C. T. Pierce; Maggie C.Y. Ng; Yuh-Hwa Wang
The formation of alternative DNA secondary structures can result in DNA breakage leading to cancer and other diseases. Chromosomal fragile sites, which are regions of the genome that exhibit chromosomal breakage under conditions of mild replication stress, are predicted to form stable DNA secondary structures. DNA breakage at fragile sites is associated with regions that are deleted, amplified or rearranged in cancer. Despite the correlation, unbiased examination of the ability to form secondary structures has not been evaluated in fragile sites. Here, using the Mfold program, we predict potential DNA secondary structure formation on the human chromosome 10 sequence, and utilize this analysis to compare fragile and non-fragile DNA. We found that aphidicolin (APH)-induced common fragile sites contain more sequence segments with potential high secondary structure-forming ability, and these segments clustered more densely than those in non-fragile DNA. Additionally, using a threshold of secondary structure-forming ability, we refined legitimate fragile sites within the cytogenetically defined boundaries, and identified potential fragile regions within non-fragile DNA. In vitro detection of alternative DNA structure formation and a DNA breakage cell assay were used to validate the computational predictions. Many of the regions identified by our analysis coincide with genes mutated in various diseases and regions of copy number alteration in cancer. This study supports the role of DNA secondary structures in common fragile site instability, provides a systematic method for their identification and suggests a mechanism by which DNA secondary structures can lead to human disease.
PLOS ONE | 2013
Laura W. Dillon; Levi C. T. Pierce; Christine E. Lehman; Yuri E. Nikiforov; Yuh-Hwa Wang
Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APH-induced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication.
Molecular Cancer Research | 2017
Pankaj Kumar; Laura W. Dillon; Yoshiyuki Shibata; Amir A. Jazaeri; David R. Jones; Anindya Dutta
Cell-free circulating linear DNA is being explored for noninvasive diagnosis and management of tumors and fetuses, the so-called liquid biopsy. Previously, we observed the presence of small extrachromosomal circular DNA (eccDNA), called microDNA, in the nuclei of mammalian tissues and cell lines. Now, we demonstrate that cell-free microDNA derived from uniquely mapping regions of the genome is detectable in plasma and serum from both mice and humans and that they are significantly longer (30%–60% >250 bases) than cell-free circulating linear DNA (∼150 bases). Tumor-derived human microDNA is detected in the mouse circulation in a mouse xenograft model of human ovarian cancer. Comparing the microDNA from paired tumor and normal lung tissue specimens reveals that the tumors contain longer microDNA. Consistent with human cancers releasing microDNA into the circulation, serum and plasma samples (12 lung and 11 ovarian cancer) collected prior to surgery are enriched for longer cell-free microDNA compared with samples from the same patient obtained several weeks after surgical resection of the tumor. Thus, circular DNA in the circulation is a previously unexplored pool of nucleic acids that could complement miRNAs and linear DNA for diagnosis and for intercellular communication. Implications: eccDNA derived from chromosomal genomic sequence, first discovered in the nuclei of cells, are detected in the circulation, are longer than linear cell-free DNA, and are released from normal tissue and tumors into the circulation. Mol Cancer Res; 15(9); 1197–205. ©2017 AACR.
EMBO Reports | 2013
Jun-Sub Im; Kyung Yong Lee; Laura W. Dillon; Anindya Dutta
The successful duplication of genomic DNA during S phase is essential for the proper transmission of genetic information to the next generation of cells. Perturbation of normal DNA replication by extrinsic stimuli or intrinsic stress can result in stalled replication forks, ultimately leading to abnormal chromatin structures and activation of the DNA damage response. On formation of stalled replication forks, many DNA repair and recombination pathway proteins are recruited to resolve the stalled fork and resume proper DNA synthesis. Initiation of replication at sites of stalled forks differs from traditional replication and, therefore, requires specialized proteins to reactivate DNA synthesis. In this issue of EMBO reports , Wan et al [1] introduce human primase‐polymerase 1 (hPrimpol1)/CCDC111, a novel factor that is essential for the restart of stalled replication forks. This article is the first, to our knowledge, to ascertain the function of human Primpol enzymes, which were originally identified as members of the archaeao‐eukaryotic primase (AEP) family [2]. Single‐stranded DNA (ssDNA) forms at stalled replication forks because of uncoupling of the DNA helicase from the polymerase, and is coated by replication protein A (RPA) for stabilization and recruitment of proteins involved in DNA repair and restart of replication. To identify novel factors playing important roles in the resolution of stalled replication forks, Wan and colleagues [1] used mass spectrometry to identify RPA‐binding partners. Among the proteins identified were those already known to be located at replication forks, including SMARCAL1/HARP, BLM and TIMELESS. In addition they found a novel interactor, the 560aa protein CCDC111. This protein interacts with the carboxyl terminus of RPA1 through its own C‐terminal region, and localizes with RPA foci in cells after hydroxyurea or DNA damage induced by ionizing irradiation. Owing to …
Journal of Thyroid Research | 2012
Laura W. Dillon; Christine E. Lehman; Yuh-Hwa Wang
The incidence of thyroid cancer is increasing, especially papillary thyroid carcinoma (PTC), making it currently the fastest-growing cancer among women. Reasons for this increase remain unclear, but several risk factors including radiation exposure and improved detection techniques have been suggested. Recently, the induction of chromosomal fragile site breakage was found to result in the formation of RET/PTC1 rearrangements, a common cause of PTC. Chromosomal fragile sites are regions of the genome with a high susceptibility to forming DNA breaks and are often associated with cancer. Exposure to a variety of external agents can induce fragile site breakage, which may account for some of the observed increase in PTC. This paper discusses the role of fragile site breakage in PTC development, external fragile site-inducing agents that may be potential risk factors for PTC, and how these factors are especially targeting women.
Carcinogenesis | 2017
Christine E. Lehman; Laura W. Dillon; Yuri E. Nikiforov; Yuh-Hwa Wang
Chromosomal rearrangements induced by non-radiation causes contribution to the majority of oncogenic fusions found in cancer. Treatment of human thyroid cells with fragile site-inducing laboratory chemicals can cause preferential DNA breakage at the RET gene and generate the RET/PTC1 rearrangement, a common driver mutation in papillary thyroid carcinomas (PTC). Here, we demonstrate that treatment with non-cytotoxic levels of environmental chemicals (benzene and diethylnitrosamine) or chemotherapeutic agents (etoposide and doxorubicin) generates significant DNA breakage within RET at levels similar to those generated by fragile site-inducing laboratory chemicals. This suggests that chronic exposure to these chemicals plays a role in the formation of non-radiation associated RET/PTC rearrangements. We also investigated whether the sensitivity of the fragile RET region could predict the likelihood of rearrangement formation using normal thyroid tissues from patients with and without RET/PTC rearrangements. We found that normal cells of patients with thyroid cancer driven by RET/PTC rearrangements have significantly higher blunt-ended, double-stranded DNA breaks at RET than those of patients without RET/PTC rearrangements. This sensitivity of a cancer driver gene suggests for the first time that a DNA breakage test at the RET region could be utilized to evaluate susceptibility to RET/PTC formation. Further, the significant increase of blunt-ended, double-stranded DNA breaks, but not other types of DNA breaks, in normal cells from patients with RET/PTC-driven tumors suggests that blunt-ended double-stranded DNA breaks are a preferred substrate for rearrangement formation, and implicate involvement of the non-homologous end joining pathway in the formation of RET/PTC rearrangements.
Cancer Research | 2014
Laura W. Dillon; Pankaj Kumar; Yoshiyuki Shibata; Anindya Dutta
Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA MicroDNAs are small (<400 base pairs in length) single- or double-stranded extrachromosomal circular DNAs that are derived by excision from tens of thousands of sites within the mammalian genome. Thus far, microDNAs have been detected in several mouse tissues, mouse and human cell lines, and both normal and malignant cells. Here, we examine the properties of microDNAs across ten tissue types (brain, heart, lung, liver, thymus, spleen, kidney, skeletal muscle, testis and sperm) from normal adult mice, chicken cell lines and human cancer cell lines. We observed microDNAs in all tissue types, originating from thousands of unique genomic loci. As was previously described, these microDNAs are small circles (100 to 400 base pairs), possess a high GC content and are enriched in genic regions. Hot spots of microDNA generation were noted across all tissue types and correlate with high gene density and GC content. Previously, we suggested that the release of microDNAs leaves behind microdeletions within the source genomic loci, resulting in somatically mosaic cells. Our results confirm this possibility by demonstrating that microDNAs are universally present across cell and tissue types in vertebrates. Interestingly, we found altered distribution patterns in the human cancer cell lines. In addition, short (2-15 bp) direct repeats that usually flank the genomic loci yielding microDNAs lead us to hypothesize that DNA damage repair pathways may be involved in microDNA generation. A survey of microDNAs in cell lines defective in proteins required for many DNA repair pathways revealed that the homologous recombination and non-homologous end joining pathways are dispensable for microDNA formation. However, deletion of two proteins, MSH3 and AID, resulted in a significant increase of microDNA originating from CpG islands. These observations combined with those in the cancer cell lines suggest that perturbation of normal cellular processes can alter the generation of microDNA. Citation Format: Laura Dillon, Pankaj Kumar, Yoshiyuki Shibata, Anindya Dutta. Widespread occurrence of extrachromosomal microDNAs in normal and cancerous vertebrate tissues and cell lines. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2396. doi:10.1158/1538-7445.AM2014-2396
Cancer Research | 2013
Laura W. Dillon; Pankaj Kumar; Yoshiyuki Shibata; Anindya Dutta
MicroDNAs are small ( Citation Format: Laura Dillon, Pankaj Kumar, Yoshiyuki Shibata, Anindya Dutta. Extrachromosomal microDNAs in normal vertebrate tissues. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 1771. doi:10.1158/1538-7445.AM2013-1771