Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laure Biniek is active.

Publication


Featured researches published by Laure Biniek.


Accounts of Chemical Research | 2012

Design of Semiconducting Indacenodithiophene Polymers for High Performance Transistors and Solar Cells

Iain McCulloch; Raja Shahid Ashraf; Laure Biniek; Hugo Bronstein; Craig Combe; Jenny E. Donaghey; David Ian James; Christian B. Nielsen; Bob C. Schroeder; Weimin Zhang

The prospect of using low cost, high throughput material deposition processes to fabricate organic circuitry and solar cells continues to drive research towards improving the performance of the semiconducting materials utilized in these devices. Conjugated aromatic polymers have emerged as a leading candidate semiconductor material class, due to their combination of their amenability to processing and reasonable electrical and optical performance. Challenges remain, however, to further improve the charge carrier mobility of the polymers for transistor applications and the power conversion efficiency for solar cells. This optimization requires a clear understanding of the relationship between molecular structure and both electronic properties and thin film morphology. In this Account, we describe an optimization process for a series of semiconducting polymers based on an electron rich indacenodithiophene aromatic backbone skeleton. We demonstrate the effect of bridging atoms, alkyl chain functionalization, and co-repeating units on the morphology, molecular orbital energy levels, charge carrier mobility, and solar cell efficiencies. This conjugated unit is extremely versatile with a coplanar aromatic ring structure, and the electron density can be manipulated by the choice of bridging group between the rings. The functionality of the bridging group also plays an important role in the polymer solubility, and out of plane aliphatic chains present in both the carbon and silicon bridge promote solubility. This particular polymer conformation, however, typically suppresses long range organization and crystallinity, which had been shown to strongly influence charge transport. In many cases, polymers exhibited both high solubility and excellent charge transport properties, even where there was no observable evidence of polymer crystallinity. The optical bandgap of the polymers can be tuned by the combination of the donating power of the bridging unit and the electron withdrawing nature of co-repeat units, alternating along the polymer backbone. Using strong donors and acceptors, we could shift the absorption into the near infrared.


Journal of Materials Chemistry | 2012

Recent advances in high mobility donor–acceptor semiconducting polymers

Laure Biniek; Bob C. Schroeder; Christian B. Nielsen; Iain McCulloch

A combination of improved understanding of molecular design criteria and polymer purification techniques, as well as optimised fabrication techniques and device surface treatments, have driven recent advances in the performance of semiconducting polymers for transistor applications. This development has allowed polymer-based devices to reach parity with the best values obtained for small molecule evaporated devices. Herein, we present the most recent work on solution processable high mobility donor–acceptor type polymers. We discuss the approaches that have been taken to improve both hole (and electron) mobility further. We will not only focus on chemical design criteria, but also describe certain processing approaches which have led to impressive hole mobilities of up to 5.5 cm2 V−1 s−1.


Chemical Communications | 2012

Synthesis of novel thieno[3,2-b]thienobis(silolothiophene) based low bandgap polymers for organic photovoltaics

Bob C. Schroeder; Raja Shahid Ashraf; Stuart Thomas; Andrew J. P. White; Laure Biniek; Christian B. Nielsen; Weimin Zhang; Zhenggang Huang; Pabitra Shakya Tuladhar; Scott E. Watkins; Thomas D. Anthopoulos; James R. Durrant; Iain McCulloch

Thieno[3,2-b]thienobis(silolothiophene), a new electron rich hexacyclic monomer has been synthesized and incorporated into three novel donor-acceptor low-bandgap polymers. By carefully choosing the acceptor co-monomer, the energy levels of the polymers could be modulated and high power conversion efficiencies of 5.52% were reached in OPV devices.


Macromolecular Rapid Communications | 2014

Orienting Semi‐Conducting π‐Conjugated Polymers

Martin Brinkmann; Lucia Hartmann; Laure Biniek; Kim Tremel; Navaphun Kayunkid

The present review focuses on the recent progress made in thin film orientation of semi-conducting polymers with particular emphasis on methods using epitaxy and shear forces. The main results reported in this review deal with regioregular poly(3-alkylthiophene)s and poly(dialkylfluorenes). Correlations existing between processing conditions, macromolecular parameters and the resulting structures formed in thin films are underlined. It is shown that epitaxial orientation of semi-conducting polymers can generate a large palette of semi-crystalline and nanostructured morphologies by a subtle choice of the orienting substrates and growth conditions.


Chemical Communications | 2013

BPTs: thiophene-flanked benzodipyrrolidone conjugated polymers for ambipolar organic transistors

Joseph W. Rumer; Matthew Levick; Sheng Yao Dai; Stephan Rossbauer; Zhenggang Huang; Laure Biniek; Thomas D. Anthopoulos; James R. Durrant; David J. Procter; Iain McCulloch

A series of novel thiophene-flanked benzodipyrrolidone (BPT)-based alternating copolymers are synthesised, their optical and electrical properties evaluated. The BPT unit promotes a conjugated, planar polymer backbone, with a low bandgap, primarily due to low lying LUMO energy levels. Copolymerisation with thiophene exhibits well balanced ambipolar organic field-effect transistor performance, with electron and hole mobilities 0.1 and 0.2 cm(2) V(-1) s(-1), respectively.


Journal of the American Chemical Society | 2014

Perylenediimide-based donor-acceptor dyads and triads: impact of molecular architecture on self-assembling properties.

Pierre-Olivier Schwartz; Laure Biniek; Elena Zaborova; Benoît Heinrich; Martin Brinkmann; Nicolas Leclerc; Stéphane Méry

Perylenediimide-based donor-acceptor co-oligomers are particularly attractive in plastic electronics because of their unique electro-active properties that can be tuned by proper chemical engineering. Herein, a new class of co-oligomers has been synthesized with a dyad structure (AD) or a triad structure (DAD and ADA) in order to understand the correlations between the co-oligomer molecular architecture and the structures formed by self-assembly in thin films. The acceptor block A is a perylene tetracarboxyl diimide (PDI), whereas the donor block D is made of a combination of thiophene, fluorene, and 2,1,3-benzothiadiazole derivatives. D and A blocks are linked by a short and flexible ethylene spacer to ease self-assembling in thin films. Structural studies using small and wide X-ray diffraction and transmission electron microscopy demonstrate that AD and ADA lamellae are made of a double layer of co-oligomers with overlapping and strongly π-stacked PDI units because the sectional area of the PDI is about half that of the donor block. These structural models allow rationalizing the absence of organization for the DAD co-oligomer and therefore to draw general rules for the design of PDI-based dyads and triads with proper self-assembling properties of use in organic electronics.


Macromolecular Rapid Communications | 2010

Electronic Properties and Photovoltaic Performances of a Series of Oligothiophene Copolymers Incorporating Both Thieno[3,2-b]thiophene and 2,1,3-Benzothiadiazole Moieties.

Laure Biniek; Christos L. Chochos; Georges Hadziioannou; Nicolas Leclerc; Patrick Lévêque; Thomas Heiser

A series of donor-acceptor alternated conjugated copolymers, composed of thiophene, bithiophene, thieno[3,2-b]thiophene, and 2,1,3-benzothiadiazole units and differing from each other by the nature and the number of 3-alkylthiophene in the backbone, have been synthesized by Stille cross-coupling polymerization. The materials optical and electrochemical properties, in solution and in thin films, have been investigated using UV-Visible absorption and cyclic voltammetry. Bulk heterojunction solar cells using blends of the newly synthesized copolymers, as electron donor, and C60-PCBM or C70-PCBM, as electron transporting material, have been elaborated. A maximum power conversion efficiency of 1.8% is achieved with a 1:4 PPBzT(2) -C12:C70-PCBM weight ratio.


Journal of Materials Chemistry C | 2015

Reversible J- to H-aggregate transformation in thin films of a perylenebisimide organogelator

Alexandru Sarbu; Laure Biniek; Jean-Michel Guenet; Philippe J. Mésini; Martin Brinkmann

A perylene bisimide organogelator is shown to behave as a reversible stimuli responsive material: thermal annealing and contact with organic non solvents allow to switch back and forth between a green J-type (Form I) and a red H-type (Form II) aggregate in thin films and powders of a N,N′-substituted H-bonding perylenebisimide (PBI-C10). Both, Form I and II were characterized by transmission electron (low dose high-resolution and electron diffraction) and atomic force microscopies, UV-vis and FTIR spectroscopies. The Form I → Form II transformation implies a redistribution of inter-molecular H-bonds between PBI molecules that form columnar stacks in Form I and supramolecular helices with enhanced long-range stacking in Form II. The reverse transformation is triggered by a contact of Form II films with H-bonding organic non solvents e.g. linear alcohols. It is proposed that solvent molecules diffusing in the Form II films can disrupt long-range H-bonding within helical stacks of Form II. Accordingly, PBI-C10 is shown to behave as a functional material responding successively to thermal and molecular stimuli.


Journal of Materials Chemistry C | 2013

Dihydropyrroloindoledione-based copolymers for organic electronics

Joseph W. Rumer; Sheng-Yao Dai; Matthew Levick; Youngju Kim; Marie-Beatrice Madec; Raja Shahid Ashraf; Zhenggang Huang; Stephan Rossbauer; Bob C. Schroeder; Laure Biniek; Scott E. Watkins; Thomas D. Anthopoulos; René A. J. Janssen; James R. Durrant; David J. Procter; Iain McCulloch

A series of four dihydropyrroloindoledione-based organic semi-conducting polymers are examined for performance in transistor and photovoltaic cell devices. The dihydropyrroloindoledione unit was alternately copolymerized with phenyl, thiophene and bithiophene comonomers, and the resultant polymers exhibit broad absorption, low-bandgaps and deep energy levels, with charge carrier mobilities approaching 0.1 cm2 V−1 s−1. Solar cells processed in a printing friendly solvent (m-xylene) exhibited >2% PCE with a high fill-factor of 0.62 and Voc of 0.75 V.


Journal of Materials Chemistry C | 2016

Tailoring the microstructure and charge transport in conjugated polymers by alkyl side-chain engineering

Sadiara Fall; Laure Biniek; Yaroslav I. Odarchenko; Denis V. Anokhin; Grégoire de Tournadre; Patrick Lévêque; Nicolas Leclerc; Dimitri A. Ivanov; Olivier Simonetti; Louis Giraudet; Thomas Heiser

Charge transport in conjugated polymers is critical to most optoelectronic devices and depends strongly on the polymer structure and conformation in the solid state. Understanding the correlations between charge carrier mobility, energy disorder and molecular assembly is therefore essential to improve device performances. Alkyl side-chains contribute to intermolecular interactions and are key to controlling the polymer microstructure and electronic properties. Investigating a set of polymers with common conjugated units but different side-chain functionalization provides new insights into the complex structure–transport relationship. Here, field-effect transistors and space-charge-limited current devices are used together with in situ grazing-incidence wide-angle X-ray scattering to study charge transport and morphology in a series of donor–acceptor copolymers. Probing hole mobility as a function of carrier density and orientation permits us to assess energy disorder and hopping rate anisotropy, while X-ray diffraction allows us to link transport properties to the polymer microstructure. We show that branched side-chains enhance structural and energy disorder and lead to isotropic transport, whereas linear chains induce either a common lamellar structure or a more exceptional pseudo-hexagonal columnar phase with a helicoidal polymer conformation. The latter enhances out-of-plane mobility but increases energy disorder possibly due to larger interring torsion angles.

Collaboration


Dive into the Laure Biniek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Heiser

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Iain McCulloch

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sadiara Fall

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian B. Nielsen

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge