Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laure Maigre is active.

Publication


Featured researches published by Laure Maigre.


PLOS ONE | 2012

Antibiotic Transport in Resistant Bacteria: Synchrotron UV Fluorescence Microscopy to Determine Antibiotic Accumulation with Single Cell Resolution

Slávka Kaščáková; Laure Maigre; Jacqueline Chevalier; Matthieu Réfrégiers; Jean-Marie Pagès

A molecular definition of the mechanism conferring bacterial multidrug resistance is clinically crucial and today methods for quantitative determination of the uptake of antimicrobial agents with single cell resolution are missing. Using the naturally occurring fluorescence of antibacterial agents after deep ultraviolet (DUV) excitation, we developed a method to non-invasively monitor the quinolones uptake in single bacteria. Our approach is based on a DUV fluorescence microscope coupled to a synchrotron beamline providing tuneable excitation from 200 to 600 nm. A full spectrum was acquired at each pixel of the image, to study the DUV excited fluorescence emitted from quinolones within single bacteria. Measuring spectra allowed us to separate the antibiotic fluorescence from the autofluorescence contribution. By performing spectroscopic analysis, the quantification of the antibiotic signal was possible. To our knowledge, this is the first time that the intracellular accumulation of a clinical antibitiotic could be determined and discussed in relation with the level of drug susceptibility for a multiresistant strain. This method is especially important to follow the behavior of quinolone molecules at individual cell level, to quantify the intracellular concentration of the antibiotic and develop new strategies to combat the dissemination of MDR-bacteria. In addition, this original approach also indicates the heterogeneity of bacterial population when the same strain is under environmental stress like antibiotic attack.


ChemMedChem | 2012

Hydroxamic Acids as Potent Inhibitors of Fe(II) and Mn(II) E. Coli Methionine Aminopeptidase: Biological Activities and X-Ray Structures of Oxazole Hydroxamate-Ecmetap-Mn Complexes.

Florian Huguet; Armelle Melet; Rodolphe Alves de Sousa; Aurélie Lieutaud; Jacqueline Chevalier; Laure Maigre; Patrick Deschamps; Alain Tomas; Nicolas Leulliot; Jean-Marie Pagès; Isabelle Artaud

New series of acids and hydroxamic acids linked to five‐membered heterocycles including furan, oxazole, 1,2,4‐ or 1,3,4‐oxadiazole, and imidazole were synthesized and tested as inhibitors against the FeII, CoII, and MnII forms of E. coli methionine aminopeptidase (MetAP) and as antibacterial agents against wild‐type and acrAB E. coli strains. 2‐Aryloxazol‐4‐ylcarboxylic acids appeared as potent and selective inhibitors of the CoII MetAP form, with IC50 values in the micromolar range, whereas 5‐aryloxazol‐2‐ylcarboxylic acid regioisomers and 5‐aryl‐1,2,4‐oxadiazol‐3‐ylcarboxylic acids were shown to be inefficient against all forms of EcMetAP. Regardless of the heterocycle, all the hydroxamic acids are highly potent inhibitors and are selective for the MnII and FeII forms, with IC50 values between 1 and 2 μM. One indole hydroxamic acid that we previously reported as a potent inhibitor of E. coli peptide deformylase also demonstrated efficiency against EcMetAP. To gain insight into the positioning of the oxazole heterocycle with reversed substitutions at positions 2 and 5, X‐ray crystal structures of EcMetAP‐Mn complexed with two such oxazole hydroxamic acids were solved. Irrespective of the [metal]/[apo‐MetAP] ratio, the active site consistently contains a dinuclear manganese center, with the hydroxamate as bridging ligand. Asp 97, which adopts a bidentate binding mode to the Mn2 site in the holoenzyme, is twisted in both structures toward the hydroxamate bridging ligand to favor the formation of a strong hydrogen bond. Most of the compounds show weak antibacterial activity against a wild‐type E. coli strain. However, increased antibacterial activity was observed mainly for compounds with a 2‐substituted phenyl group in the presence of the nonapeptide polymyxin B and phenylalanine–arginine–β‐naphthylamide as permeabilizer and efflux pump blocker, respectively, which boost the intracellular uptake of the inhibitors.


Scientific Reports | 2016

Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level

Bertrand Cinquin; Laure Maigre; Elizabeth Pinet; Jacqueline Chevalier; Robert A. Stavenger; Scott Mills; Matthieu Réfrégiers; Jean-Marie Pagès

Bacterial multidrug resistance is a significant health issue. A key challenge, particularly in Gram-negative antibacterial research, is to better understand membrane permeation of antibiotics in clinically relevant bacterial pathogens. Passing through the membrane barrier to reach the required concentration inside the bacterium is a pivotal step for most antibacterials. Spectrometric methodology has been developed to detect drugs inside bacteria and recent studies have focused on bacterial cell imaging. Ultimately, we seek to use this method to identify pharmacophoric groups which improve penetration, and therefore accumulation, of small-molecule antibiotics inside bacteria. We developed a method to quantify the time scale of antibiotic accumulation in living bacterial cells. Tunable ultraviolet excitation provided by DISCO beamline (synchrotron Soleil) combined with microscopy allows spectroscopic analysis of the antibiotic signal in individual bacterial cells. Robust controls and measurement of the crosstalk between fluorescence channels can provide real time quantification of drug. This technique represents a new method to assay drug translocation inside the cell and therefore incorporate rational drug design to impact antibiotic uptake.


Bioconjugate Chemistry | 2014

Conjugation of a new series of dithiocarbazate Schiff base Copper(II) complexes with vectors selected to enhance antibacterial activity.

May Lee Low; Laure Maigre; Pierre Dorlet; Régis Guillot; Jean-Marie Pagès; Karen A. Crouse; Clotilde Policar; Nicolas Delsuc

A new series of six Schiff bases derived from S-methyldithiocarbazate (SMDTC) and S-benzyldithiocarbazate (SBDTC) with methyl levulinate (SMML, SBML), levulinic acid (SMLA, SBLA), and 4-carboxybenzaldehyde (SM4CB, SB4CB) were reacted with copper(II), producing complexes of general formula ML2 (M = Cu(II), L = ligand). All compounds were characterized using established physicochemical and spectroscopic methods. Crystal structures were determined for three Schiff bases (SMML, SBML, SBLA) and two Cu(II) complexes (Cu(SMML)2 and Cu(SMLA)2). In order to provide more insight into the behavior of the complexes in solution, electron paramagnetic resonance (EPR) and electrochemical experiments were performed. The parent ligands and their respective copper(II) complexes exhibited moderate antibacterial activity against both Gram-negative and Gram-positive bacteria. The most active ligand (SB4CB) and its analogous S-methyl derivative (SM4CB) were conjugated with various vector moieties: polyarginines (R1, R4, R9, and RW9), oligoethylene glycol (OEG), and an efflux pump blocker, phenylalanine-arginine-β-naphthylamide (PAβN). Nonaarginine (R9) derivatives showed the most encouraging synergistic effects upon conjugation and complexation with copper ion including enhanced water solubility, bacteria cell membrane permeability, and bioactivity. These Cu(II)-R9 derivatives display remarkable antibacterial activity against a wide spectrum of bacteria and, in particular, are highly efficacious against Staphylococcus aureus with minimum inhibitory concentration (MIC) values of 0.5-1 μM. This pioneer study clearly indicates that the conjugation of cell-penetrating peptides (CPPs) to dithiocarbazate compounds greatly enhances their therapeutic potential.


PLOS ONE | 2015

In Vivo Evolution of Bacterial Resistance in Two Cases of Enterobacter aerogenes Infections during Treatment with Imipenem

Nadège Philippe; Laure Maigre; Sébastien Santini; Elizabeth Pinet; Jean-Michel Claverie; Anne-Véronique Davin-Régli; Jean-Marie Pagès; Muriel Masi

Infections caused by multidrug resistant (MDR) bacteria are a major concern worldwide. Changes in membrane permeability, including decreased influx and/or increased efflux of antibiotics, are known as key contributors of bacterial MDR. Therefore, it is of critical importance to understand molecular mechanisms that link membrane permeability to MDR in order to design new antimicrobial strategies. In this work, we describe genotype-phenotype correlations in Enterobacter aerogenes, a clinically problematic and antibiotic resistant bacterium. To do this, series of clinical isolates have been periodically collected from two patients during chemotherapy with imipenem. The isolates exhibited different levels of resistance towards multiple classes of antibiotics, consistently with the presence or the absence of porins and efflux pumps. Transport assays were used to characterize membrane permeability defects. Simultaneous genome-wide analysis allowed the identification of putative mutations responsible for MDR. The genome of the imipenem-susceptible isolate G7 was sequenced to closure and used as a reference for comparative genomics. This approach uncovered several loci that were specifically mutated in MDR isolates and whose products are known to control membrane permeability. These were omp35 and omp36, encoding the two major porins; rob, encoding a global AraC-type transcriptional activator; cpxA, phoQ and pmrB, encoding sensor kinases of the CpxRA, PhoPQ and PmrAB two-component regulatory systems, respectively. This report provides a comprehensive analysis of membrane alterations relative to mutational steps in the evolution of MDR of a recognized nosocomial pathogen.


ACS Medicinal Chemistry Letters | 2013

New Peptide-Based Antimicrobials for Tackling Drug Resistance in Bacteria: Single-Cell Fluorescence Imaging

Jean-Marie Pagès; Slávka Kaščáková; Laure Maigre; Anas Allam; Mickael Alimi; Jacqueline Chevalier; Erwan Galardon; Matthieu Réfrégiers; Isabelle Artaud

New peptide molecules with metal binding abilities proved to be active against multidrug resistant clinical isolates. One of them labeled with a dansylated lysine has been imaged inside single-multidrug resistant bacteria cells by deep ultraviolet fluorescence, showing a heterogeneous subcellular localization. The fluorescence intensity is clearly related to the accumulation of the drug inside the bacteria, being dependent both on its concentration and on the incubation time with cells.


Bioconjugate Chemistry | 2014

New peptides with metal binding abilities and their use as drug carriers.

Anas Allam; Laure Maigre; Mickael Alimi; Rodolphe Alves de Sousa; Assia Hessani; Erwan Galardon; Jean-Marie Pagès; Isabelle Artaud

Many new designed molecules that target efficiently in vitro bacterial metalloproteases were completely inactive in cellulo against Gram negative bacteria. Their activities were limited by the severe restriction of the penetration/diffusion rate through the outer membrane barrier. To bypass this limitation, we have assayed the strategy of metallodrugs, to improve the delivery of hydroxamic acid inhibitors to peptide deformylase. In this metal-chaperone, to facilitate bacterial uptake, the ancillary ligand tris(2-pyridylmethyl)amine (TPA) or di(picolyl)amine (DPA) was functionalized by a tetrapeptide analogue of antimicrobial peptide, RWRW(OBn) (AA08 with TPA) and/or an efflux pump modulator PAβN (AA09 with TPA and AA27 with DPA). We prepared Co(III), Zn(II), and Cu(II) metallodrugs. Using a fluorescent hydroxamic acid, we showed that, in contrast to Cu(II) metallodrugs, Co(III) metallodrugs were stable in the Mueller Hinton (MH) broth during the time required for bacterial assays. The antibacterial activities were determined against E. coli strain wild-type (AG100) and E. coli strain deleted from acrAB efflux pump (AG100A). While none of the PDFinhs used in this study (SMP289 with an indole scaffold, AT015 and AT019 built on a 1,2,4-oxadiazole scaffold) displayed activity higher than 128 μM, all the metallodrugs were active with MICs around 8 μM both against AG100 and AG100A. However, compared to the activities of equimolar combinations of PDFinhs and the free chelating peptides (AA08, AA09, or AA27), they showed similar activities. A synergistic association between AT019 and AA08 or AA09 was determined using the fractional inhibitory concentration with AG100 and AG100A. Combinations of peptides lacking the chelating group with PDFinhs were inefficient. LC-MS analyses showed that the chelating peptides bind Zn(II) cation when incubated in MH broth. These results support the in situ formation of a zinc metallodrug, but we failed to detect it by LC-MS in MH. Nevertheless, this chelating peptides metalated with zinc act as permeabilizers which are more efficient than PAβN to facilitate the uptake of PDFinhs by Gram(-) bacteria.


European Journal of Medicinal Chemistry | 2016

New insight into the structural, electrochemical and biological aspects of macroacyclic Cu(II) complexes derived from S-substituted dithiocarbazate schiff bases

May Lee Low; Laure Maigre; Mohamed Ibrahim Mohamed Tahir; Edward R. T. Tiekink; Pierre Dorlet; Régis Guillot; Thahira Begum S. A. Ravoof; Rozita Rosli; Jean-Marie Pagès; Clotilde Policar; Nicolas Delsuc; Karen A. Crouse

Copper (II) complexes synthesized from the products of condensation of S-methyl- and S-benzyldithiocarbazate with 2,5-hexanedione (SMHDH2 and SBHDH2 respectively) have been characterized using various physicochemical (elemental analysis, molar conductivity, magnetic susceptibility) and spectroscopic (infrared, electronic) methods. The structures of SMHDH2, its copper (II) complex, CuSMHD, and the related CuSBHD complex as well as a pyrrole byproduct, SBPY, have been determined by single crystal X-ray diffraction. In order to provide more insight into the behaviour of the complexes in solution, electron paramagnetic resonance (EPR) and electrochemical experiments were performed. Antibacterial activity and cytotoxicity were evaluated. The compounds, dissolved in 0.5% and 5% DMSO, showed a wide range of antibacterial activity against 10 strains of Gram-positive and Gram-negative bacteria. Investigations of the effects of efflux pumps and membrane penetration on antibacterial activity are reported herein. Antiproliferation activity was observed to be enhanced by complexation with copper. Preliminary screening showed Cu complexes are strongly active against human breast adenocarcinoma cancer cell lines MDA-MB-231 and MCF-7.


Scientific Reports | 2017

Fluoroquinolone structure and translocation flux across bacterial membrane

Julia Vergalli; Estelle Dumont; Bertrand Cinquin; Laure Maigre; Jelena Pajovic; Eric Bacqué; Michael Mourez; Matthieu Réfrégiers; Jean-Marie Pagès

Bacterial multidrug resistance is a worrying health issue. In Gram-negative antibacterial research, the challenge is to define the antibiotic permeation across the membranes. Passing through the membrane barrier to reach the inhibitory concentration inside the bacterium is a pivotal step for antibacterial molecules. A spectrofluorimetric methodology has been developed to detect fluoroquinolones in bacterial population and inside individual Gram-negative bacterial cells. In this work, we studied the antibiotic accumulation in cells expressing various levels of efflux pumps. The assays allow us to determine the intracellular concentration of the fluoroquinolones to study the relationships between the level of efflux activity and the antibiotic accumulation, and finally to evaluate the impact of fluoroquinolone structures in this process. This represents the first protocol to identify some structural parameters involved in antibiotic translocation and accumulation, and to illustrate the recently proposed “Structure Intracellular Concentration Activity Relationship” (SICAR) concept.


Scientific Reports | 2017

Microspectrofluorimetry to dissect the permeation of ceftazidime in Gram-negative bacteria

Anas Allam; Laure Maigre; Julia Vergalli; Estelle Dumont; Bertrand Cinquin; Rodolphe Alves de Sousa; Jelena Pajovic; Elizabeth Pinet; Nikaïa Smith; Jean-Philippe Herbeuval; Matthieu Réfrégiers; Isabelle Artaud; Jean-Marie Pagès

A main challenge in chemotherapy is to determine the in cellulo parameters modulating the drug concentration required for therapeutic action. It is absolutely urgent to understand membrane permeation and intracellular concentration of antibiotics in clinical isolates: passing the membrane barrier to reach the threshold concentration inside the bacterial periplasm or cytoplasm is the pivotal step of antibacterial activity. Ceftazidime (CAZ) is a key molecule of the combination therapy for treating resistant bacteria. We designed and synthesized different fluorescent CAZ derivatives (CAZ*, CAZ**) to dissect the early step of translocation-accumulation across bacterial membrane. Their activities were determined on E. coli strains and on selected clinical isolates overexpressing ß-lactamases. The accumulation of CAZ* and CAZ** were determined by microspectrofluorimetry and epifluorimetry. The derivatives were properly translocated to the periplasmic space when we permeabilize the outer membrane barrier. The periplasmic location of CAZ** was related to a significant antibacterial activity and with the outer membrane permeability. This study demonstrated the correlation between periplasmic accumulation and antibiotic activity. We also validated the method for approaching ß-lactam permeation relative to membrane permeability and paved the way for an original matrix for determining “Structure Intracellular Accumulation Activity Relationship” for the development of new therapeutic candidates.

Collaboration


Dive into the Laure Maigre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Artaud

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthieu Réfrégiers

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Anas Allam

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Bertrand Cinquin

École normale supérieure de Cachan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Estelle Dumont

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Julia Vergalli

Aix-Marseille University

View shared research outputs
Researchain Logo
Decentralizing Knowledge