Laurel Ellyn Kirkland
Lunar and Planetary Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurel Ellyn Kirkland.
Remote Sensing of Environment | 2002
Laurel Ellyn Kirkland; Kenneth C. Herr; Eric R. Keim; Paul M. Adams; John W. Salisbury; John A. Hackwell; Allan H. Treiman
In May 1999, the airborne thermal infrared hyperspectral imaging system, Spatially Enhanced Broadband Array Spectrograph System (SEBASS), was flown over Mormon Mesa, NV, to provide the first test of such a system for geological mapping. Several types of carbonate deposits were identified using the 11.25-μm band. However, massive calcrete outcrops exhibited weak spectral contrast, which was confirmed by field and laboratory measurements. Because the weathered calcrete surface appeared relatively smooth in hand specimen, this weak spectral contrast was unexpected. Here we show that microscopic roughness not readily apparent to the eye has introduced both a cavity effect and volume scattering to reduce spectral contrast. The macroroughness of crevices and cobbles may also have a significant cavity effect. The diminished spectral contrast is important because it places higher signal-to-noise ratio (SNR) requirements for spectroscopic detection and identification. This effect should be factored into instrumentation planning and interpretations, especially interpretations without benefit of ground truth. SEBASS had the required high SNR and spectral resolution to allow us to demonstrate for the first time the ability of an airborne hyperspectral thermal infrared scanner to detect and identify spectrally subtle materials.
Applied Optics | 2001
Laurel Ellyn Kirkland; Kenneth C. Herr; John W. Salisbury
Infrared emission spectra recorded by airborne or satellite spectrometers can be searched for spectral features to determine the composition of rocks on planetary surfaces. Surface materials are identified by detections of characteristic spectral bands. We show how to define whether to accept an observed spectral feature as a detection when the target material is unknown. We also use remotely sensed spectra measured by the Thermal Emission Spectrometer (TES) and the Spatially Enhanced Broadband Array Spectrograph System to illustrate the importance of instrument parameters and surface properties on band detection limits and how the variation in signal-to-noise ratio with wavelength affects the bands that are most detectable for a given instrument. The spectrometers sampling interval, spectral resolution, signal-to-noise ratio as a function of wavelength, and the samples surface properties influence whether the instrument can detect a spectral feature exhibited by a material. As an example, in the 6-13-mum wavelength region, massive carbonates exhibit two bands: a very strong, broad feature at ~6.5 mum and a less intense, sharper band at ~11.25 mum. Although the 6.5-mum band is stronger and broader in laboratory-measured spectra, the 11.25-mum band will cause a more detectable feature in TES spectra.
International Symposium on Optical Science and Technology | 2002
R. Glenn Sellar; Glenn D. Boreman; Laurel Ellyn Kirkland
Although the throughput and multiplex advantages of Fourier transform spectrometry were established in the early 1950s (by Jacquinot and Fellgett , respectively) confusion and debate arise when these advantages are cited in reference to imaging spectrometry. In non-imaging spectrometry the terms throughput and spectral bandwidth clearly refer to the throughput of the entire field-of-view (FOV), and the spectral bandwidth of the entire FOV, but in imaging spectrometry these terms may refer to either the entire FOV or to a single element in the FOV. The continued development of new and fundamentally different types of imaging spectrometers also adds to the complexity of predictions of signal and comparisons of signal collection abilities. Imaging spectrometers used for remote sensing may be divided into classes according to how they relate the object space coordinates of cross-track position, along-track position, and wavelength (or wavenumber) to the image space coordinates of column number, row number, and exposure number for the detector array. This transformation must be taken into account when predicting the signal or comparing the signal collection abilities of different classes of imaging spectrometer. The invariance of radiance in an imaging system allows the calculation of signal to be performed at any space in the system, from the object space to the final image space. Our calculations of signal - performed at several different spaces in several different classes of imaging spectrometer - show an interesting result: regardless of the plane in which the calculation is performed, interferometric (Fourier transform) spectrometers have a dramatic advantage in signal, but the term in the signal equation from which the advantage results depends upon the space in which the calculation is performed. In image space, the advantage results from the spectral term in the signal equation, suggesting that this could be referred to as the multiplex (Fellgett) advantage. In an intermediate image plane the advantage results from a difference in a spatial term, while for the exit pupil plane it results from the angular term, both of which suggest the throughput (Jacquinot) advantage. When the calculation is performed in object coordinates the advantage results from differences in the temporal term.
Journal of Geophysical Research | 2000
Laurel Ellyn Kirkland; Kenneth C. Herr
Two hundred-forty infrared spectra acquired by the 1969 Mariner Mars 7 Infrared Spectrometer (IRS), spanning the wavelength region 1.8-14.4 micron (5550-690/cm), have recently been recovered and calibrated in both wavelength and intensity. An examination of these IRS spectra has revealed absorptions at 11.25 and 12.5 micron that have not previously been reported for Mars. A search of the literature and spectral data bases shows that materials that exhibit a doublet at 11.25 and 12.5 micron are rare. In this paper we examine potential causes for these features and include a detailed discussion of carbonates, goethite, CO2 ice, and water ice. CO2 ice and water ice measured in transmission do not exhibit bands that match those recorded at 11.25 and 12.5 micron for Mars, which indicates that CO2 or water ice clouds are not the source of these features. Since these bands show no clear correlation with atmospheric path length, they are most likely caused by a surface material. In the IRS database they appear to be exceptionally intense in the western part of the Hellas basin. Goethite exhibits bands that are a good spectral match, but confirming whether goethite causes the features will require additional studies of the 20-50 micron region. These studies will require laboratory measurements of weathering coatings and an examination of spectra recorded of Mars by the 1971 Mariner Mars Infrared Interferometer Spectrometer (IRIS; 5-50 micron 2000200/cm) and the 1996 Thermal Emission Spectrometer (TES; 6-50 micron 1667-200/cm).
International Symposium on Optical Science and Technology | 2002
R. Glenn Sellar; Alexander Katsevich; Laurel Ellyn Kirkland
Static Fourier transform spectrometers have the ability to combine the principle advantages of the two traditional techniques used for imaging spectrometry: the throughput advantage offered by Fourier transform spectrometers, and the advantage of no moving parts offered by dispersive spectrometers. The imaging versions of these spectrometers obtain both spectral information, and spatial information in one dimension, in a single exposure. The second spatial dimension may be obtained by sweeping a narrow field mask across the object while acquiring successive exposures. When employed as a pushbroom sensor from an aircraft or spacecraft, no moving parts are required, since the platform itself provides this motion. But the use of this narrow field mask to obtain the second spatial dimension prevents the throughput advantage from being realized. We present a technique that allows the use of a field stop that is wide in the along-track direction, while preserving the spatial resolution, and thus enables such an instrument to actually exploit the throughput advantage when used as a pushbroom sensor. The basis of this advance is a deconvolution technique we have developed to recover the spatial resolution in data acquired with a field stop that is wide in the along-track direction. The effectiveness is demonstrated by application of this deconvolution technique to simulated data.
International Symposium on Optical Science and Technology | 2002
Laurel Ellyn Kirkland; Kenneth C. Herr; John W. Salisbury; Eric R. Keim; Paul M. Adams; John A. Hackwell
The Mars exploration strategy calls first for the detection from orbit of minerals indicative of environments conducive to the support of life or the preservation of biomarkers. That information would then be used for astrobiology landing site selection. The near-term search will be conducted by the 1996 Global Surveyor Thermal Emission Spectrometer (TES) and the 2001 Mars Odyssey 9-band radiometer Thermal Emission Imaging System (THEMIS). This places the productivity of TES and THEMIS in the critical path of the Mars astrobiology strategy. Most predictions of mineral detection limits for TES and THEMIS are based on laboratory spectra of fresh mineral surfaces. However, standard laboratory measurements of fresh mineral surfaces generally do not reproduce all the spectral effects of weathering and surface roughness that are very apparent in field spectra, and these differences can critically affect interpretations of TES and THEMIS data. Here we examine causes of variations in spectral contrast, and differences in spectral signatures recorded in the field and in typical laboratory measurements, and show what the results indicate for the search for minerals and landing sites using TES and THEMIS. We conclude that for TES and THEMIS to attain their predicted mineral detection limits, minerals must be present under specific conditions: well-crystalline, smooth-surfaced at several scales, and low atmospheric downwelling radiance contribution. As a result, TES and THEMIS should not necessarily be used to exclude landing sites that are of interest for other reasons (e.g. geomorphology), but that exhibit no clear detections of minerals of interest to astrobiologists.
Icarus | 2000
Scott L. Murchie; Laurel Ellyn Kirkland; Stephane Erard; John F. Mustard; Mark S. Robinson
Journal of Geophysical Research | 2003
Laurel Ellyn Kirkland; Kenneth C. Herr; Paul M. Adams
Geophysical Research Letters | 2004
Laurel Ellyn Kirkland; Kenneth C. Herr; Paul M. Adams
Archive | 2003
Laurel Ellyn Kirkland; Kenneth C. Herr; Paul M. Adams; John W. Salisbury