Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurel G. Woodruff is active.

Publication


Featured researches published by Laurel G. Woodruff.


Contributions to Mineralogy and Petrology | 1994

Geochemistry and argon thermochronology of the Variscan Sila Batholith, southern Italy: source rocks and magma evolution

Robert A. Ayuso; Antonia Messina; Benedetto De Vivo; Selma Russo; Laurel G. Woodruff; John F. Sutter; Harvey E. Belkin

The Sila batholith is the largest granitic massif in the Calabria-Peloritan Arc of southern Italy, consisting of syn to post-tectonic, calc-alkaline and metaluminous tonalite to granodiorite, and post-tectonic, peraluminous and strongly peraluminous, two-mica±cordierite±Al silicate granodiorite to leucomonzogranite. Mineral 40Ar/39Ar thermochronologic analyses document Variscan emplacement and cooling of the intrusives (293–289 Ma). SiO2 content in the granitic rocks ranges from ∼57 to 77 wt%; cumulate gabbro enclaves have SiO2 as low as 42%. Variations in absolute abundances and ratios involving Hf, Ta, Th, Rb, and the REE, among others, identify genetically linked groups of granitic rocks in the batholith: (1) syn-tectonic biotite±amphibole-bearing tonalites to granodiorites, (2) post-tectonic two-mica±Al-silicate-bearing granodiorites to leucomonzogranites, and (3) post-tectonic biotite±hornblende tonalites to granodiorites. Chondrite-normalized REE patterns display variable values of Ce/Yb (up to ∼300) and generally small negative Eu anomalies. Degree of REE fractionation depends on whether the intrusives are syn- or post-tectonic, and on their mineralogy. High and variable values of Rb/Y (0.40–4.5), Th/Sm (0.1–3.6), Th/Ta (0–70), Ba/Nb (1–150), and Ba/Ta (∼50–2100), as well as low values of Nb/U (∼2–28) and La/Th (∼1–10) are consistent with a predominant and heterogeneous crustal contribution to the batholith. Whole rock δ18O ranges from ∼+8.2 to +11.7‰; the mafic cumulate enclaves have the lowest δ18O values and the two-mica granites have the highest values. δ18O values for biotite±honblende tonalitic and granodioritic rocks (9.1 to 10.8‰) overlap the values of the mafic enclaves and two-mica granodiorites and leucogranites (10.7 to 11.7‰). The initial Pb isotopic range of the granitic rocks (206Pb/204Pb ∼18.17–18.45, 207Pb/204Pb ∼15.58–15.77, 208Pb/204Pb ∼38.20–38.76) also indicates the predominance of a crustal source. Although the granitic groups cannot be uniquely distinguished on the basis of their Pb isotope compositions most of the post-tectonic tonalites to granodiorites as well as two-mica granites are somewhat less radiogenic than the syn-tetonic tonalites and granodiorites. Only a few of the mafic enclaves overlap the Pb isotope field of the granitic rocks and are consistent with a cogenetic origin. The Sila batholith was generated by mixing of material derived from at least two sources, mantle-derived and crustal, during the closing stages of plate collision and post-collision. The batholith ultimately owes its origin to the evolution of earlier, more mafic parental magmas, and to complex intractions of the fractionating mafic magmas with the crust. Hybrid rocks produced by mixing evolved primarily by crystal fractionation although a simple fractionation model cannot link all the granitic rocks, or explain the entire spectrum of compositions within each group of granites. Petrographic and geochemical features characterizing the Sila batholith have direct counterparts in all other granitic massifs in the Calabrian-Peloritan Arc. This implies that magmatic events in the Calabrian-Peloritan Arc produced a similar spectrum of granitic compositions and resulted in a distinctive type of granite magmatism consisting of coeval, mixed, strongly peraluminous and metaluminous granitic magmas.


Environmental Science & Technology | 2010

Immediate and long-term fire effects on total mercury in forests soils of northeastern Minnesota.

Laurel G. Woodruff; William F. Cannon

Within the Boundary Waters Canoe Area Wilderness in northeastern Minnesota, soils were collected from 116 sites in areas of primarily virgin forest with fire-origin stand years (year of last recognizable stand-killing wildfire) that range from the 1759 to 1976. Median concentrations for total mercury in soils for this span of 217 years range from 0.28 +/- 0.088 ppm (1759) to 0.09 +/- 0.047 ppm (1976) for A-horizon soils and from 0.23 +/- 0.062 ppm (1759) to 0.09 +/- 0.018 ppm (1976) for O-horizon soils. A separate study of soils collected from 30 sites within an area that burned in a 2004 wildfire at Voyageurs National Park, northern Minnesota, suggested that high soil burn severity resulted in significant mercury loss from both organic and mineral soils. Integrated data from these two studies and additional regional soil data demonstrate that older forests have progressively higher mercury concentrations in O-horizon soils (r(2) = 0.423) and A-horizon soils (r(2) = 0.456). These results support the hypotheses that an important factor for mercury concentrations in forest soils is time since stand-replacing fire and that high soil burn severity has the potential to reduce the concentration of mercury in burned soils for tens to hundreds of years.


Science of The Total Environment | 2009

Evaluating the spatial variation of total mercury in young-of-year yellow perch (Perca flavescens), surface water and upland soil for watershed-lake systems within the southern Boreal Shield

Mark C. Gabriel; Randy Kolka; Trent Wickman; Edward A. Nater; Laurel G. Woodruff

The primary objective of this research is to investigate relationships between mercury in upland soil, lake water and fish tissue and explore the cause for the observed spatial variation of THg in age one yellow perch (Perca flavescens) for ten lakes within the Superior National Forest. Spatial relationships between yellow perch THg tissue concentration and a total of 45 watershed and water chemistry parameters were evaluated for two separate years: 2005 and 2006. Results show agreement with other studies where watershed area, lake water pH, nutrient levels (specifically dissolved NO(3)(-)-N) and dissolved iron are important factors controlling and/or predicting fish THg level. Exceeding all was the strong dependence of yellow perch THg level on soil A-horizon THg and, in particular, soil O-horizon THg concentrations (Spearman rho=0.81). Soil B-horizon THg concentration was significantly correlated (Pearson r=0.75) with lake water THg concentration. Lakes surrounded by a greater percentage of shrub wetlands (peatlands) had higher fish tissue THg levels, thus it is highly possible that these wetlands are main locations for mercury methylation. Stepwise regression was used to develop empirical models for the purpose of predicting the spatial variation in yellow perch THg over the studied region. The 2005 regression model demonstrates it is possible to obtain good prediction (up to 60% variance description) of resident yellow perch THg level using upland soil O-horizon THg as the only independent variable. The 2006 model shows even greater prediction (r(2)=0.73, with an overall 10 ng/g [tissue, wet weight] margin of error), using lake water dissolved iron and watershed area as the only model independent variables. The developed regression models in this study can help with interpreting THg concentrations in low trophic level fish species for untested lakes of the greater Superior National Forest and surrounding Boreal ecosystem.


Geochemistry-exploration Environment Analysis | 2013

Statistical variability of the geochemistry and mineralogy of soils in the Maritime Provinces of Canada and part of the Northeast United States

Eric C. Grunsky; Lawrence J. Drew; Laurel G. Woodruff; Peter Friske; David M. Sutphin

A soil geochemical survey in the Maritime Provinces of Canada and part of the Northeast United States was completed for the North American Soil Geochemistry Landscapes Project. Soil samples, derived largely from unsorted glacial till, were collected over 349 sites, from 0 to 5 cm depth (regardless of horizon), A-, and C-horizons. The 0 to 5 cm depth interval represents the soil of interest in health risk assessments and is termed the Public Health (PH-) layer. The <2 mm fraction of each sample was analysed for a broad suite of major and trace elements using a near-total four-acid digestion, and major mineralogical components were determined by quantitative X-ray diffraction. Multivariate statistical analyses of the logcentred soil geochemistry from the PH-layer and the two soil horizons, and of the soil mineralogy from the A- and C-horizons, reveal distinctive inter-element relationships from deeper soil (represented by the C-horizon) upwards into topsoil (represented by the A-horizon and PH-layer). Statistical dispersion of several elements increases upwards in the soil profile. Maximum data dispersion occurs in the PH-layer and A-horizon soils. Elements including S, P, Pb, Hg, Cd, Se, Mo, Sb, Bi and Sn are relatively enriched in the PH-layer and A-horizon, and are positively correlated with increasing organic carbon contents. The relative enrichment of groups of elements in the C-horizon, in contrast to those elements in the A-horizon and PH-layer, suggests a composition that reflects the geochemistry of the glacial till that is derived from the local bedrock. Elements such as Ni, Mg, Cr, V, Co, Fe and Sc, represent a mafic component of the parent material, and relative enrichments of K, Rb, Zr, rare-earth elements, Li and Al indicate a more felsic component. The patterns revealed by the application of multivariate methods to the soil chemistry and mineralogy are attributed to underlying geology, soil-forming processes, and anthropogenic activity, or combinations of all three factors. Both the soil geochemistry and mineralogy were tested in their ability to predict soil horizon and underlying bedrock lithology or time-stratigraphic assemblages. The geochemistry and mineralogy of the soils are both good for predicting soil horizon; however, the soil geochemistry is better for predicting the underlying lithologies/assemblages than the soil mineralogy.


Eos, Transactions American Geophysical Union | 2001

New Map Reveals Origin and Geology of North American Mid-Continent Rift.

William F. Cannon; D. L. Daniels; Suzanne W. Nicholson; J. Phillips; Laurel G. Woodruff; Val W. Chandler; G. B. Morey; Terrence J. Boerboom; K. R. Wirth; M. G. Mudrey

New aeromagnetic data from the north central United States are helping geophysicists and geologists better understand the 1.1-billion-year-old mid-continent rift, one of the fundamental components of the Precambrian basement of North America. A detailed geologic map of part of the rift is being made and a myriad of new details concerning the history of rift subsidence, volcanism, sedimentation, and inversion are being deciphered. The data are also helping to establish a link between well-known parts of the rift in the Lake Superior region, where exposures of rift-related rocks are abundant and where a comprehensive geophysical data base has existed for more than a decade, and the buried extension of the rift to the southwest. Scientists from the U.S. Geological Survey (USGS), the Minnesota Geological Survey the Wisconsin Geological and Natural History Survey and Macalester College are using the new data in conjunction with field and laboratory investigations in a joint study that promises to produce new insights into the history and formation of the rift.


Journal of Geochemical Exploration | 2004

Some statistical relationships between stream sediment and soil geochemistry in northwestern Wisconsin - can stream sediment compositions be used to predict compositions of soils in glaciated terranes?

William F. Cannon; Laurel G. Woodruff; Shana Pimley

Abstract Mean stream sediment chemical compositions from northwestern Wisconsin in the north central United States, based on more than 800 samples, differ significantly from mean A-horizon and C-horizon soil compositions, based on about 380 samples of each horizon. Differences by a factor greater than 1.5 exist for some elements (Ca, Mn, Mg, P, Ti, Ni, Pb, Se, Zn). A very large database of stream sediment geochemistry exists for the region (more than 2200 samples) and for the U.S. (roughly 400,000 samples), whereas data on the chemistry of soils is much sparser both regionally and nationally. Therefore, we have attempted to quantify trends in compositional differences between stream sediments and nearby soils to test whether the abundant stream sediment data can be used to predict soil compositions. A simple computational technique of adjusting the stream sediment compositions according to the ratio of means of soils and stream sediments was conducted. A variety of techniques of correction and interpolation of data were tested and indicate that repetitive testing of results allows an optimum correction to be achieved. Predicted soil compositions compared to analytically determined soil compositions show a range of results from relatively good correspondence for some elements to rather poor correspondence for others. In general, predictions are best at midranges of compositions. The technique does not predict well more extreme or anomalous values. Thus, this technique appears to be useful for estimating background soil compositions and delineating regional compositional trends in soils in situations where large amounts of stream sediment analyses and smaller amounts of soil analyses are available. The technique also provides probabilistic qualifications on the expected error between predicted and actual soil compositions so that individual users can judge if the technique provides data of sufficient accuracy for specific needs.


PLOS ONE | 2014

Mercury in the soil of two contrasting watersheds in the eastern United States.

Douglas A. Burns; Laurel G. Woodruff; Paul M. Bradley; William F. Cannon

Soil represents the largest store of mercury (Hg) in terrestrial ecosystems, and further study of the factors associated with soil Hg storage is needed to address concerns about the magnitude and persistence of global environmental Hg bioaccumulation. To address this need, we compared total Hg and methyl Hg concentrations and stores in the soil of different landscapes in two watersheds in different geographic settings with similar and relatively high methyl Hg concentrations in surface waters and biota, Fishing Brook, Adirondack Mountains, New York, and McTier Creek, Coastal Plain, South Carolina. Median total Hg concentrations and stores in organic and mineral soil samples were three-fold greater at Fishing Brook than at McTier Creek. Similarly, median methyl Hg concentrations were about two-fold greater in Fishing Brook soil than in McTier Creek soil, but this difference was significant only for mineral soil samples, and methyl Hg stores were not significantly different among these watersheds. In contrast, the methyl Hg/total Hg ratio was significantly greater at McTier Creek suggesting greater climate-driven methylation efficiency in the Coastal Plain soil than that of the Adirondack Mountains. The Adirondack soil had eight-fold greater soil organic matter than that of the Coastal Plain, consistent with greater total Hg stores in the northern soil, but soil organic matter – total Hg relations differed among the sites. A strong linear relation was evident at McTier Creek (r2 = 0.68; p<0.001), but a linear relation at Fishing Brook was weak (r2 = 0.13; p<0.001) and highly variable across the soil organic matter content range, suggesting excess Hg binding capacity in the Adirondack soil. These results suggest greater total Hg turnover time in Adirondack soil than that of the Coastal Plain, and that future declines in stream water Hg concentrations driven by declines in atmospheric Hg deposition will be more gradual and prolonged in the Adirondacks.


Journal of Environmental Quality | 2012

Latent Effect of Soil Organic Matter Oxidation on Mercury Cycling within a Southern Boreal Ecosystem

Mark C. Gabriel; Randy Kolka; Trent Wickman; Laurel G. Woodruff; Edward A. Nater

The focus of this study is to investigate processes causing the observed spatial variation of total mercury (THg) in the soil O horizon of watersheds within the Superior National Forest (Minnesota) and to determine if results have implications toward understanding long-term changes in THg concentrations for resident fish. Principal component analysis was used to evaluate the spatial relationships of 42 chemical elements in three soil horizons over 10 watersheds. Results indicate that soil organic carbon is the primary factor controlling the spatial variation of certain metals (Hg, Tl, Pb, Bi, Cd, Sn, Sb, Cu, and As) in the O and A soil horizons. In the B/E horizon, organic carbon appeared to play a minor role in metal spatial variation. These characteristics are consistent with the concentration of soil organic matter and carbon decreasing from the O to the B/E horizons. We also investigated the relationship between percent change in upland soil organic content and fish THg concentrations across all watersheds. Statistical regression analysis indicates that a 50% reduction in age-one and age-two fish THg concentration could result from an average 10% decrease in upland soil organic content. Disturbances that decrease the content of THg and organic matter in the O and A horizons (e.g., fire) may cause a short-term increase in atmospherically deposited mercury but, over the long term, may lead to decreased fish THg concentrations in affected watersheds.


Journal of Environmental Quality | 2017

Yellow Perch ( Perca flavescens ) Mercury Unaffected by Wildland Fires in Northern Minnesota

Charlotte E. Riggs; Randall K. Kolka; Edward A. Nater; Emma L. Witt; Trent Wickman; Laurel G. Woodruff; Jason T. Butcher

Wildland fire can alter mercury (Hg) cycling on land and in adjacent aquatic environments. In addition to enhancing local atmospheric Hg redeposition, fire can influence terrestrial movement of Hg and other elements into lakes via runoff from burned upland soil. However, the impact of fire on water quality and the accumulation of Hg in fish remain equivocal. We investigated the effects of fire-specifically, a low-severity prescribed fire and moderate-severity wildfire-on young-of-the-year yellow perch () and lake chemistry in a small remote watershed in the Boundary Waters Canoe Area Wilderness in northeastern Minnesota. We used a paired watershed approach: the fire-affected watershed was compared with an adjacent, unimpacted (reference) watershed. Prior to fire, upland organic horizons in the two study watersheds contained 1549 μg Hg m on average. Despite a 19% decrease in upland organic horizon Hg stocks due to the moderate severity wildfire fire, fish Hg accumulation and lake productivity were not affected by fire in subsequent years. Instead, climate and lake water levels were the strongest predictors of lake chemistry and fish responses in our study lakes over 9 yr. Our results suggest that low- to moderate-severity wildland fire does not alter lake productivity or Hg accumulation in young-of-the-year yellow perch in these small, shallow lakes in the northern deciduous and boreal forest region.


Data Series | 2013

Geochemical and mineralogical data for soils of the conterminous United States

David B. Smith; William F. Cannon; Laurel G. Woodruff; Federico Solano; James E. Kilburn; David L. Fey

Collaboration


Dive into the Laurel G. Woodruff's collaboration.

Top Co-Authors

Avatar

William F. Cannon

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

David B. Smith

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Klaus J. Schulz

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James E. Kilburn

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Nadine M. Piatak

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Robert R. Seal

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Robert G. Garrett

Geological Survey of Canada

View shared research outputs
Top Co-Authors

Avatar

David L. Fey

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Federico Solano

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge