Laurel S. Kleppe
Mayo Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurel S. Kleppe.
Circulation | 2003
Rajiv Gulati; Dragan Jevremovic; Timothy E. Peterson; Tyra A. Witt; Laurel S. Kleppe; Cheryl S. Mueske; Amir Lerman; Richard Vile; Robert D. Simari
Background—Bone marrow–derived cells have been shown to contribute to endothelial replacement after vascular injury. In vitro culture of peripheral blood mononuclear cells produces cells with phenotypic characteristics of endothelium. To test the hypothesis that delivery of autologous culture-modified mononuclear cells (CMMCs) to injured arteries could attenuate the vascular response to injury, a rabbit model was studied. Methods and Results—Rabbit peripheral blood mononuclear cells were cultured in endothelial growth media for 7 to 12 days, yielding highly proliferative cells with distinct endothelial phenotype (expressing CD31 and endothelial nitric oxide synthase and capable of acetylated LDL uptake). A rabbit model of balloon carotid injury was used to evaluate the effect of day 7 CMMC delivery on vascular responses. Animals underwent balloon injury and immediate delivery of autologous CMMCs or buffered saline by 20 minutes of local dwelling. Fluorescence-labeled CMMCs were detected in all vessel layers 4 weeks after delivery. Colonies of cells that localized to the lumen and stained for endothelial markers were also identified. Local CMMC administration at the time of balloon injury accelerated reendothelialization at 4 weeks compared with saline (P <0.05). Moreover, CMMC delivery markedly improved endothelium-dependent vasoreactivity at 4 weeks compared with saline (P <0.005). Finally, CMMC treatment reduced neointimal formation by 55% at 4 weeks (P <0.05). Conclusions—These data demonstrate that delivery of CMMCs to balloon-injured arteries is associated with accelerated reendothelialization, enhanced endothelium-dependent vasoreactivity, and reduced neointimal formation. Thus, delivery of autologous CMMCs represents a novel vasculoprotective approach to attenuate the response to acute vascular injury.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2003
Timothy E. Peterson; Maria Eugenia Guicciardi; Rajiv Gulati; Laurel S. Kleppe; Cheryl S. Mueske; Martina Mookadam; Grzegorz Sowa; Gregory J. Gores; William C. Sessa; Robert D. Simari
Background—Caveolin-1 is a regulator of signaling events originating from plasma membrane microdomains termed caveolae. This study was performed to determine the regulatory role of caveolin-1 on the proliferative events induced by platelet-derived growth factor (PDGF) in vascular smooth muscle cells (VSMCs). Methods and Results—Treatment of VSMCs with PDGF for 24 hours resulted in a loss of caveolin-1 protein expression and plasma membrane–associated caveolae, despite a 3-fold increase in caveolin-1 mRNA. Pretreatment of VSMCs with chloroquine, an inhibitor of lysosomal function, inhibited the PDGF-induced loss of caveolin-1. These studies demonstrated that caveolin-1 was a target of PDGF signaling events. Adenoviral overexpression of caveolin-1 was associated with a switch in PDGF-induced signaling events from a proliferative response to an apoptotic response. This overexpression inhibited PDGF-induced expression of cyclin D1 in the presence of unaffected mitogen-activated protein kinase activation. Conclusions—Taken together, these studies suggest that caveolin-1 is an inhibitor of PDGF proliferative responses and might be capable of transforming PDGF-induced proliferative signals into death signals.
Circulation Research | 1998
Noel M. Caplice; Cheryl S. Mueske; Laurel S. Kleppe; Timothy E. Peterson; George J. Broze; Robert D. Simari
Tissue factor pathway inhibitor (TFPI) in vivo is thought to be synthesized mainly by endothelial cells. To date, no significant regulator of TFPI synthesis has been described. Vascular smooth muscle cells (VSMC) express tissue factor in vitro and in vivo, which may contribute to vascular thrombosis. We hypothesized that VSMC might also express TFPI. To determine this, we examined growth-arrested coronary VSMC in culture and found that VSMC secreted an amount of TFPI similar to that seen in endothelial cells. Immunohistochemistry of normal human coronary arteries showed TFPI staining throughout the media and intima of the vessel with localization to VSMC and endothelial cells. To determine regulation of TFPI expression in VSMC, we examined the effects of serum stimulation on TFPI secretion and found that FBS induced a 5-fold increase in TFPI antigen and activity levels in conditioned medium at 48 hours (P<0.001) when compared with serum-free conditions. A similar stimulatory effect was seen with 10% pooled human serum. Moreover, epidermal growth factor and platelet-derived growth factor-B increased TFPI secretion by 4- to 5-fold and 2- to 3-fold, respectively (P<0.05), and these growth factors accounted for approximately 50% of the TFPI secretion effects of human serum. The serum effect was associated with a 3-fold increase in TFPI mRNA 24 hours after release from growth arrest and a 50% decrease in TFPI secretion after treatment with actinomycin D. Taken together, this study suggests that there is significant TFPI expression in VSMC in culture and in VSMC within the intima and media of the normal coronary artery wall. We present the first evidence for TFPI regulation by serum in VSMC and more specifically by its constituent growth factors, epidermal growth factor and platelet-derived growth factor-B.
Circulation | 2012
Peter J. Psaltis; Adriana Harbuzariu; Sinny Delacroix; Tyra A. Witt; Eric W. Holroyd; Daniel B. Spoon; Scott J. Hoffman; Shuchong Pan; Laurel S. Kleppe; Cheryl S. Mueske; Rajiv Gulati; Gurpreet S. Sandhu; Robert D. Simari
Background— Hematopoiesis originates from the dorsal aorta during embryogenesis. Although adult blood vessels harbor progenitor populations for endothelial and smooth muscle cells, it is not known if they contain hematopoietic progenitor or stem cells. Here, we hypothesized that the arterial wall is a source of hematopoietic progenitor and stem cells in postnatal life. Methods and Results— Single-cell aortic disaggregates were prepared from adult chow-fed C57BL/6 and apolipoprotein E–null (ApoE−/−) mice. In short- and long-term methylcellulose-based culture, aortic cells generated a broad spectrum of multipotent and lineage-specific hematopoietic colony-forming units, with a preponderance of macrophage colony-forming units. This clonogenicity was higher in lesion-free ApoE−/− mice and localized primarily to stem cell antigen-1–positive cells in the adventitia. Expression of stem cell antigen-1 in the aorta colocalized with canonical hematopoietic stem cell markers, as well as CD45 and mature leukocyte antigens. Adoptive transfer of labeled aortic cells from green fluorescent protein transgenic donors to irradiated C57BL/6 recipients confirmed the content of rare hematopoietic stem cells (1 per 4 000 000 cells) capable of self-renewal and durable, low-level reconstitution of leukocytes. Moreover, the predominance of long-term macrophage precursors was evident by late recovery of green fluorescent protein–positive colonies from recipient bone marrow and spleen that were exclusively macrophage colony-forming units. Although trafficking from bone marrow was shown to replenish some of the hematopoietic potential of the aorta after irradiation, the majority of macrophage precursors appeared to arise locally, suggesting long-term residence in the vessel wall. Conclusions— The postnatal murine aorta contains rare multipotent hematopoietic progenitor/stem cells and is selectively enriched with stem cell antigen-1–positive monocyte/macrophage precursors. These populations may represent novel, local vascular sources of inflammatory cells.
Circulation Research | 2014
Peter J. Psaltis; Amrutesh S. Puranik; Daniel B. Spoon; Colin D. Chue; Scott J. Hoffman; Tyra A. Witt; Sinny Delacroix; Laurel S. Kleppe; Cheryl S. Mueske; Shuchong Pan; Rajiv Gulati; Robert D. Simari
Rationale: Macrophages regulate blood vessel structure and function in health and disease. The origins of tissue macrophages are diverse, with evidence for local production and circulatory renewal. Objective: We identified a vascular adventitial population containing macrophage progenitor cells and investigated their origins and fate. Methods and Results: Single-cell disaggregates from adult C57BL/6 mice were prepared from different tissues and tested for their capacity to form hematopoietic colony-forming units. Aorta showed a unique predilection for generating macrophage colony-forming units. Aortic macrophage colony-forming unit progenitors coexpressed stem cell antigen-1 and CD45 and were adventitially located, where they were the predominant source of proliferating cells in the aortic wall. Aortic Sca-1+CD45+ cells were transcriptionally and phenotypically distinct from neighboring cells lacking stem cell antigen-1 or CD45 and contained a proliferative (Ki67+) Lin−c-Kit+CD135−CD115+CX3CR1+Ly6C+CD11b− subpopulation, consistent with the immunophenotypic profile of macrophage progenitors. Adoptive transfer studies revealed that Sca-1+CD45+ adventitial macrophage progenitor cells were not replenished via the circulation from bone marrow or spleen, nor was their prevalence diminished by depletion of monocytes or macrophages by liposomal clodronate treatment or genetic deficiency of macrophage colony-stimulating factor. Rather adventitial macrophage progenitor cells were upregulated in hyperlipidemic ApoE−/− and LDL-R−/− mice, with adventitial transfer experiments demonstrating their durable contribution to macrophage progeny particularly in the adventitia, and to a lesser extent the atheroma, of atherosclerotic carotid arteries. Conclusions: The discovery and characterization of resident vascular adventitial macrophage progenitor cells provides new insight into adventitial biology and its participation in atherosclerosis and provokes consideration of the broader existence of local macrophage progenitors in other tissues.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Shuchong Pan; Horng H. Chen; Deborah M. Dickey; Guido Boerrigter; Candace Lee; Laurel S. Kleppe; Jennifer L. Hall; Amir Lerman; Margaret M. Redfield; Lincoln R. Potter; John C. Burnett; Robert D. Simari
Alternative RNA splicing may provide unique opportunities to identify drug targets and therapeutics. We identified an alternative spliced transcript for B-type natriuretic peptide (BNP) resulting from intronic retention. This transcript is present in failing human hearts and is reduced following mechanical unloading. The intron-retained transcript would generate a unique 34 amino acid (aa) carboxyl terminus while maintaining the remaining structure of native BNP. We generated antisera to this carboxyl terminus and identified immunoreactivity in failing human heart tissue. The alternatively spliced peptide (ASBNP) was synthesized and unlike BNP, failed to stimulate cGMP in vascular cells or vasorelax preconstricted arterial rings. This suggests that ASBNP may lack the dose-limiting effects of recombinant BNP. Given structural considerations, a carboxyl-terminal truncated form of ASBNP was generated (ASBNP.1) and was determined to retain the ability of BNP to stimulate cGMP in canine glomerular isolates and cultured human mesangial cells but lacked similar effects in vascular cells. In a canine-pacing model of heart failure, systemic infusion of ASBNP.1 did not alter mean arterial pressure but increased the glomerular filtration rate (GFR), suppressed plasma renin and angiotensin, while inducing natriuresis and diuresis. Consistent with its distinct in vivo effects, the activity of ASBNP.1 may not be explained through binding and activation of NPR-A or NPR-B. Thus, the biodesigner peptide ASBNP.1 enhances GFR associated with heart failure while lacking the vasoactive properties of BNP. These findings demonstrate that peptides with unique properties may be designed based on products of alternatively splicing.
Thrombosis and Haemostasis | 2004
Shuchong Pan; Laurel S. Kleppe; Tyra A. Witt; Cheryl S. Mueske; Robert D. Simari
Tissue factor pathway inhibitor (TFPI) is a Kunitz-type protease inhibitor that regulates the extrinsic pathway of coagulation by inhibiting the factor VIIa/tissue factor (TF) catalytic complex. TFPI is expressed by both endothelial and smooth muscle cells in the vasculature and circulates at low levels. The role of local vascular TFPI in thrombosis and the development of vascular disease is unknown. To establish an experimental animal model to directly modulate smooth muscle cell-derived TFPI on the development of arterial thrombosis, transgenic mice in which a cDNA encoding murine TFPI is expressed from the murine SM22alpha promoter were generated. Expression of transgenic mRNA was 4-fold higher than the level of endogenous TFPI mRNA in arteries from transgenic mice. In situ hybridization confirmed that expression of the transgene was limited to medial vascular smooth muscle cells. Vascular TFPI activity was increased to 2 to 3-fold in carotid homogenates. There was no difference in plasma TFPI levels or hemostatic measures (PT, aPTT and tail vein bleeding times) between these mice and their wildtype littermates. In a ferric chloride-induced model of carotid thrombosis, homozygotic transgenic mice demonstrated resistance to thrombotic occlusion compared to wildtype littermates. In transgenic mice 22% occluded within 30 minutes of application while 84% of wild type mice occluded within the same time frame (p<0.01). Heterozygotic transgenic mice had an intermediate thrombotic phenotype. Taken together, these data indicated that local VSMC-specific TFPI overexpression attenuated ferric chloride-induced thrombosis without systemic or hemostatic effects. Furthermore, this transgenic mouse model should prove useful for studying the role of TFPI in the development and progression of vascular disease.
Endothelium-journal of Endothelial Cell Research | 2007
Pernelle A. Smits; Laurel S. Kleppe; Tyra A. Witt; Cheri S. Mueske; Richard Vile; Robert D. Simari
Cells with an endothelial phenotype can be cultured from peripheral blood. These cells include cells of a monocytic origin with endothelial features (culture-modified mononuclear cells, CMMCs) and, at later time points, blood outgrowth endothelial cells (BOECs). Both are promising candidates for systemic cell-based cardiovascular therapies and each may have unique capabilities. Indeed, the combined use of both cell types has been shown to have synergistic therapeutic features requiring simultaneous delivery. However, the majority of preclinical studies of cell delivery have used splenectomized animals to increase systemic distribution. The goal of this study was to directly compare the distribution of these two cell types following systemic delivery in an intact animal model. A similar pattern of delivery was seen following delivery of both cell types with detection in the lung, liver, bone marrow, and spleen. Taken together, the data suggest that strategies using systemic delivery of circulation-derived cells must consider the distribution and efficiency of delivery in intact animals.
Stroke | 2009
Harald Froehlich; Rajiv Gulati; Barry A. Boilson; Tyra A. Witt; Adriana Harbuzariu; Laurel S. Kleppe; Allan B. Dietz; Amir Lerman; Robert D. Simari
BACKGROUND AND PURPOSE Adipose tissue is an abundant source of endothelial cells as well as stem and progenitor cells which can develop an endothelial phenotype. It has been demonstrated that these cells have distinct angiogenic properties in vitro and in vivo. However, whether these cells have the capacity to directly improve large vessel form and function after vascular injury remains unknown. To define whether delivery of adipose-derived endothelial cells (ADECs) would improve healing of injured carotid arteries, a rabbit model of acute arterial injury was used. METHODS Autologous rabbit ADECs were generated using defined culture conditions. To test the ability of ADECs to enhance carotid artery repair, cells were delivered intraarterially after acute balloon injury. Additional delivery studies were performed after functional selection of cells before delivery. RESULTS After rabbit omental fat harvest and digestion, a proliferative, homogenous, and distinctly endothelial population of ADECs was identified. Direct delivery of autologous ADECs resulted in marked reendothelialization 48 hours after acute vascular injury as compared to saline controls (82.2+/-26.9% versus 4.2+/-3.0% P<0.001). Delivery of ADECs that were selected for their ability to take up acetylated LDL significantly improved vasoreactivity and decreased intimal formation after vascular injury. CONCLUSIONS Taken together, these data suggest that ADECs represent an autologous source of proliferative endothelial cells, which demonstrate the capacity to rapidly improve reendothelialization, improve vascular reactivity, and decrease intimal formation in a carotid artery injury model.
Gene Therapy | 2003
Vini G. Khurana; Deborah A. Weiler; Tyra A. Witt; Leslie A. Smith; Laurel S. Kleppe; Joseph E. Parisi; Robert D. Simari; Timothy O'Brien; Stephen J. Russell; Zvonimir S. Katusic
We describe a mechanical method for delivery of adenoviral vector to the adventitial surface of arteries and to other tissues. Our goal was to characterize, principally in intact carotid artery, the morphological, biochemical, and functional effects of mechanical delivery of a recombinant β-galactosidase-expressing adenoviral vector following its direct application using a small paintbrush. Our ex vivo and in vivo data demonstrate efficient, accurate, and rapid transduction of arteries without compromise of their morphological, biochemical, and functional integrity. We also demonstrate the general applicability of this technique in vivo via transduction of skeletal muscle, fibrotendinous tissue, peritoneum, serosal surface of bowel, and wounded skin. We conclude that direct mechanical delivery of an adenoviral vector to tissues using a suitable paintbrush represents an intuitive, accurate, and effective means of augmenting gene transfer efficiency, and may be a useful adjunct to other delivery methods.