Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauren A. O'Connell is active.

Publication


Featured researches published by Lauren A. O'Connell.


The Journal of Comparative Neurology | 2011

The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis.

Lauren A. O'Connell; Hans A. Hofmann

All animals evaluate the salience of external stimuli and integrate them with internal physiological information into adaptive behavior. Natural and sexual selection impinge on these processes, yet our understanding of behavioral decision‐making mechanisms and their evolution is still very limited. Insights from mammals indicate that two neural circuits are of crucial importance in this context: the social behavior network and the mesolimbic reward system. Here we review evidence from neurochemical, tract‐tracing, developmental, and functional lesion/stimulation studies that delineates homology relationships for most of the nodes of these two circuits across the five major vertebrate lineages: mammals, birds, reptiles, amphibians, and teleost fish. We provide for the first time a comprehensive comparative analysis of the two neural circuits and conclude that they were already present in early vertebrates. We also propose that these circuits form a larger social decision‐making (SDM) network that regulates adaptive behavior. Our synthesis thus provides an important foundation for understanding the evolution of the neural mechanisms underlying reward processing and behavioral regulation. J. Comp. Neurol. 519:3599–3639, 2011.


Hormones and Behavior | 2012

Isotocin regulates paternal care in a monogamous cichlid fish.

Lauren A. O'Connell; Bryan J. Matthews; Hans A. Hofmann

While the survival value of paternal care is well understood, little is known about its physiological basis. Here we investigate the neuroendocrine contributions to paternal care in the monogamous cichlid, Amatitlania nigrofasciata. We first explored the dynamic range of paternal care in three experimental groups: biparental males (control fathers housed with their mate), single fathers (mate removed), or lone males (mate and offspring removed). We found that control males gradually increase paternal care over time, whereas single fathers increased care immediately after mate removal. Males with offspring present had lower levels of circulating 11-ketotestosterone (11-KT) yet still maintained aggressive displays toward brood predators. To determine what brain regions may contribute to paternal care, we quantified induction of the immediate early gene c-Fos, and found that single fathers have more c-Fos induction in the forebrain area Vv (putative lateral septum homologue), but not in the central pallium (area Dc). While overall preoptic area c-Fos induction was similar between groups, we found that parvocellular preoptic isotocin (IST) neurons in single fathers showed increased c-Fos induction, suggesting IST may facilitate the increase of paternal care after mate removal. To functionally test the role of IST in regulating paternal care, we treated biparental males with an IST receptor antagonist, which blocked paternal care. Our results indicate that isotocin plays a significant role in promoting paternal care, and more broadly suggest that the convergent evolution of paternal care across vertebrates may have recruited similar neuroendocrine mechanisms.


The Journal of Comparative Neurology | 2011

Characterization of the dopaminergic system in the brain of an African cichlid fish, Astatotilapia burtoni

Lauren A. O'Connell; Miles R. Fontenot; Hans A. Hofmann

Catecholamines, such as dopamine, are evolutionarily ancient neurotransmitters that play an essential role in mediating behavior. In vertebrates, dopamine is central to the nigrostriatal motor and mesolimbic reward systems. Despite its importance, the distribution of the dopaminergic system has not been well studied in the teleost brain. The African cichlid fish Astatotilapia burtoni has become an important model system in social neuroscience and lends itself to uncovering how social decisions are implemented in the brain. To understand better where dopamine acts to regulate social behavior in this species, we have determined the distribution of putative dopaminergic cells and fibers (by tyrosine hydroxylase immunohistochemistry) and dopamine receptors (by in situ hybridization for the D1A and D2 dopamine receptor subtypes) throughout the forebrain and part of the mesencephalon of A. burtoni. Tyrosine hydroxylase immunoreactivity was evident in several regions of the fore‐ and midbrain, in support of putative homologies to tetrapods. Additionally, the D1A and D2 receptors were identified in brain regions known to modulate social behavior in other vertebrates, including the proposed teleost homologues of the mammalian amygdalar complex, hippocampus, striatum, preoptic area, anterior hypothalamus, ventromedial hypothalamus, and ventral tegmental area/substantia nigra pars compacta. Tyrosine hydroxylase‐immunoreactive fibers as well as D1A and D2 receptor expression overlap almost completely in their distribution. These results significantly extend our understanding of the distribution of the dopaminergic system in the teleost brain and suggest a conserved role of dopamine in modulating behavior across vertebrates. J. Comp. Neurol. 519:75‐92, 2011.


Endocrinology | 2012

Social Status Predicts How Sex Steroid Receptors Regulate Complex Behavior across Levels of Biological Organization

Lauren A. O'Connell; Hans A. Hofmann

Social status strongly affects behavior and physiology, in part mediated by gonadal hormones, although how each sex steroid acts across levels of biological organization is not well understood. We examine the role of sex steroids in modulating social behavior in dominant (DOM) and subordinate (SUB) males of a highly social fish, Astatotilapia burtoni. We first used agonists and antagonists to each sex steroid receptor and found that androgens and progestins modulate courtship behavior only in DOM, whereas estrogens modulate aggressive behavior independent of social status. We then examined the hormonal and physiological responses to sex steroid receptor antagonist treatment and uncovered substantial changes in circulating steroid hormone levels and gonad size only in SUB, not in DOM. Consistent with status-based physiological sensitivities to drug manipulation, we found that neuropeptide and steroid receptor gene expression in the preoptic area was sensitive only in SUB. However, when we compared the transcriptomes of males that received either vehicle or an estrogen receptor antagonist, 8.25% of all genes examined changed expression in DOM in comparison with only 0.56% in SUB. Finally, we integrate behavior, physiology, and brain gene expression to infer functional modules that underlie steroid receptor regulation of behavior. Our work suggests that environmentally induced changes at one level of biological organization do not simply affect changes of similar magnitude at other levels, but that instead very few key pathways likely serve as conduits for executing plastic responses across multiple levels.


Hormones and Behavior | 2012

Rising StARs: behavioral, hormonal, and molecular responses to social challenge and opportunity.

Lin S. Huffman; Maggie M. Mitchell; Lauren A. O'Connell; Hans A. Hofmann

Across taxa, individuals must respond to a dynamic social environment of challenges and opportunities on multiple biological levels, including behavior, hormone profiles, and gene expression. We investigated the response to a complex social environment including both territorial challenges and reproductive opportunities in the African cichlid fish Astatotilapia burtoni (Burtons mouthbrooder), a species well-known for its phenotypic plasticity. Male A. burtoni are either socially dominant or subordinate and can transition between the two phenotypes. We used this transition to simultaneously study changes in aggression, reproductive behavior, testosterone and estradiol levels, gonadal histology, and testes expression of three genes involved in testosterone synthesis. We have found that males immediately become aggressive and increase testosterone levels when they become dominant in this paradigm of challenge and opportunity. Reproductive behavior and estradiol increase slightly later but are also up-regulated within 24h. Increases in steroid hormone levels are accompanied by an increase in expression of steroidogenic acute regulatory protein (StAR), the rate-limiting enzyme during testosterone synthesis, as well as an increase in testis maturation as measured by histological organization. Reproductive behavior was found to correlate with female gravidity, suggesting that males were able to perceive reproductive opportunity. Our study demonstrates the rapid plasticity at multiple levels of biological organization that animals can display in response to changes in their complex social environment.


Journal of Neuroendocrinology | 2013

Neuroendocrine Mechanisms Underlying Sensory Integration of Social Signals

Lauren A. O'Connell; Maggie M. Rigney; Daniel W. Dykstra; Hans A. Hofmann

Individuals integrate information about their environment into adaptive behavioural responses, yet how different sensory modalities contribute to these decisions and where in the brain this integration occurs is not well understood. We presented male cichlid fish (Astatotilapia burtoni) with sensory information in three social contexts: intruder challenge, reproductive opportunity and a socially neutral situation. We then measured behavioural and hormonal responses along with induction of the immediate early gene c‐Fos in candidate forebrain regions. In the intruder challenge context, males were exposed to either a visual stimulus of a dominant male, the putative male pheromone androstenedione, or both. We found that, compared to the neutral context, a visual stimulus was necessary and sufficient for an aggressive response, whereas both chemical and visual stimuli were needed for an androgen response. In the reproductive opportunity context, males were exposed to either a visual stimulus of a receptive female, a progesterone metabolite (female pheromone) only, or both. We further found that the visual stimulus is necessary and sufficient for an androgen response in the reproductive opportunity context. In the brain, we observed c‐Fos induction in response to a visual challenge stimulus specifically in dopaminergic neurones of area Vc (the central region of the ventral telencephalon), a putative striatal homologue, whereas presentation of a chemical stimulus did not induce c‐Fos induction in the intruder challenge context. Our results suggest that different sensory cues are processed in a social context‐specific manner as part of adaptive decision‐making processes.


Hormones and Behavior | 2013

Sex differences and similarities in the neuroendocrine regulation of social behavior in an African cichlid fish

Lauren A. O'Connell; Julia H. Ding; Hans A. Hofmann

An individuals position in a social hierarchy profoundly affects behavior and physiology through interactions with community members, yet little is known about how the brain contributes to status differences between and within the social states or sexes. We aimed to determine sex-specific attributes of social status by comparing circulating sex steroid hormones and neural gene expression of sex steroid receptors in dominant and subordinate male and female Astatotilapia burtoni, a highly social African cichlid fish. We found that testosterone and 17β-estradiol levels are higher in males regardless of status and dominant individuals regardless of sex. Progesterone was found to be higher in dominant individuals regardless of sex. Based on pharmacological manipulations in males and females, progesterone appears to be a common mechanism for promoting courtship in dominant individuals. We also examined expression of androgen receptors, estrogen receptor α, and the progesterone receptor in five brain regions that are important for social behavior. Most of the differences in brain sex steroid receptor expression were due to sex rather than status. Our results suggest that the parvocellular preoptic area is a core region for mediating sex differences through androgen and estrogen receptor expression, whereas the progesterone receptor may mediate sex and status behaviors in the putative homologs of the nucleus accumbens and ventromedial hypothalamus. Overall our results suggest sex differences and similarities in the regulation of social dominance by gonadal hormones and their receptors in the brain.


Brain Behavior and Evolution | 2010

Characterization of the Dopamine System in the Brain of the Túngara Frog, Physalaemus pustulosus

Lauren A. O'Connell; Bryan J. Matthews; Michael J. Ryan; Hans A. Hofmann

Dopamine is an evolutionarily ancient neurotransmitter that plays an essential role in mediating behavior. In vertebrates, dopamine is central to the mesolimbic reward system, a neural network concerned with the valuation of stimulus salience, and to the nigrostriatal motor system and hypothalamic nuclei involved in the regulation of locomotion and social behavior. In amphibians, dopaminergic neurons have been mapped out in several species, yet the distribution of dopaminoreceptive cells is unknown. The túngara frog, Physalaemus pustulosus, is an excellent model system for the study of neural mechanisms by which valuations of stimuli salience and social decisions are made, especially in the context of mate choice. In order to better understand where dopamine acts to regulate social decisions in this species, we have determined the distribution of putative dopaminergic cells (using tyrosine hydroxylase immunohistochemistry) and cells receptive to dopaminergic signaling (using DARPP-32 immunohistochemistry) throughout the brain of P. pustulosus. The distribution of dopaminergic cells was comparable to other anurans. DARPP-32 immunoreactivity was identified in key brain regions known to modulate social behavior in other vertebrates including the proposed anuran homologues of the mammalian amygdalar complex, nucleus accumbens, hippocampus, striatum, preoptic area, anterior hypothalamus, ventromedial hypothalamus, and ventral tegmental area/substantia nigra pars compacta. Due to its widespread distribution, DARPP-32 likely also plays many roles in non-limbic brain regions that mediate non-social information processing. These results significantly extend our understanding of the distribution of the dopaminergic system in the anuran brain and beyond.


Journal of Neuroendocrinology | 2011

Neuronal nitric oxide synthase as a substrate for the evolution of pseudosexual behaviour in a parthenogenetic whiptail lizard.

Lauren A. O'Connell; Bryan J. Matthews; David Crews

The evolution of neuroendocrine mechanisms governing sex‐typical behaviour is poorly understood. An outstanding animal model is the whiptail lizard (Cnemidophorus) because both the ancestral and descendent species still exist. The ancestral little striped whiptail, Cnemidophorus inornatus, consists of males and females, which exhibit sex‐specific mating behaviours. The descendent desert grassland whiptail, Cnemidophorus uniparens, consists only of females that alternately exhibit both female‐like and male‐like pseudosexual behaviour. Castrated male C. inornatus will mount a conspecific in response to exogenous androgen, although some are also sensitive to progesterone. This polymorphism in progesterone sensitivity in the ancestral species may have been involved in evolution of progesterone‐mediated male‐typical behaviour in the descendant unisexual lizards. We tested whether progesterone activates a typically androgenic signalling pathway by investigating hormonal regulation of neuronal nitric oxide synthase (nNOS) using in situ hybridisation and NADPH diaphorase histochemistry, a stain for nNOS protein. NADPH diaphorase is widely distributed throughout the brain of both species, although only in the periventricular nucleus of the preoptic area (pvPOA) are there differences between mounting and non‐mounting individuals. The number of cells expressing nNOS mRNA and NADPH diaphorase is higher in the pvPOA of individuals that mount in response to progesterone or androgen. Furthermore, the nNOS promoter has both androgen and progesterone response elements, and NADPH diaphorase colocalises with the progesterone receptor in the pvPOA. These data suggest that a polymorphism in progesterone sensitivity in the sexual ancestor reflects a differential regulation of nNOS and may account for the male‐typical behaviour in unisexual whiptail lizards.


Genes, Brain and Behavior | 2012

Androgens coordinate neurotransmitter-related gene expression in male whiptail lizards

Lauren A. O'Connell; M. M. Mitchell; Hans A. Hofmann; David Crews

Sex steroid hormones coordinate neurotransmitter systems in the male brain to facilitate sexual behavior. Although neurotransmitter release in the male brain has been well documented, little is known about how androgens orchestrate changes in gene expression of neurotransmitter receptors. We used male whiptail lizards (Cnemidophorus inornatus) to investigate how androgens alter neurotransmitter-related gene expression in brain regions involved in social decision making. We focused on three neurotransmitter systems involved in male-typical sexual behavior, including the N-methyl-d-aspartate (NMDA) glutamate receptor, nitric oxide and dopamine receptors. Here, we show that in androgen-treated males, there are coordinated changes in neurotransmitter-related gene expression. In androgen-implanted castrates compared with blank-implanted castrates (control group), we found associated increases in neuronal nitric oxide synthase gene expression in the nucleus accumbens (NAcc), preoptic area and ventromedial hypothalamus, a decrease of NR1 gene expression (obligate subunit of NMDA receptors) in the medial amygdaloid area and NAcc and a decrease in D1 and D2 dopamine receptor gene expression in the NAcc. Our results support and expand the current model of androgen-mediated gene expression changes of neurotransmitter-related systems that facilitate sexual behavior in males. This also suggests that the proposed evolutionarily ancient reward system that reinforces sexual behavior in amniote vertebrates extends to reptiles.

Collaboration


Dive into the Lauren A. O'Connell's collaboration.

Top Co-Authors

Avatar

Hans A. Hofmann

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Bryan J. Matthews

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

David Crews

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge