Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauren A. Weiss is active.

Publication


Featured researches published by Lauren A. Weiss.


The New England Journal of Medicine | 2008

Association between Microdeletion and Microduplication at 16p11.2 and Autism

Lauren A. Weiss; Yiping Shen; Joshua M. Korn; Dan E. Arking; David T. Miller; Ragnheidur Fossdal; Evald Saemundsen; Hreinn Stefansson; Todd Green; Orah S. Platt; Douglas M. Ruderfer; Christopher A. Walsh; David Altshuler; Aravinda Chakravarti; Rudolph E. Tanzi; Kari Stefansson; Susan L. Santangelo; James F. Gusella; Pamela Sklar; Bai-Lin Wu; Mark J. Daly

BACKGROUND Autism spectrum disorder is a heritable developmental disorder in which chromosomal abnormalities are thought to play a role. METHODS As a first component of a genomewide association study of families from the Autism Genetic Resource Exchange (AGRE), we used two novel algorithms to search for recurrent copy-number variations in genotype data from 751 multiplex families with autism. Specific recurrent de novo events were further evaluated in clinical-testing data from Childrens Hospital Boston and in a large population study in Iceland. RESULTS Among the AGRE families, we observed five instances of a de novo deletion of 593 kb on chromosome 16p11.2. Using comparative genomic hybridization, we observed the identical deletion in 5 of 512 children referred to Childrens Hospital Boston for developmental delay, mental retardation, or suspected autism spectrum disorder, as well as in 3 of 299 persons with autism in an Icelandic population; the deletion was also carried by 2 of 18,834 unscreened Icelandic control subjects. The reciprocal duplication of this region occurred in 7 affected persons in AGRE families and 4 of the 512 children from Childrens Hospital Boston. The duplication also appeared to be a high-penetrance risk factor. CONCLUSIONS We have identified a novel, recurrent microdeletion and a reciprocal microduplication that carry substantial susceptibility to autism and appear to account for approximately 1% of cases. We did not identify other regions with similar aggregations of large de novo mutations.


Nature Genetics | 2006

The sex-specific genetic architecture of quantitative traits in humans.

Lauren A. Weiss; Lin Pan; Mark Abney; Carole Ober

Mapping genetically complex traits remains one of the greatest challenges in human genetics today. In particular, gene-environment and gene-gene interactions, genetic heterogeneity and incomplete penetrance make thorough genetic dissection of complex traits difficult, if not impossible. Sex could be considered an environmental factor that can modify both penetrance and expressivity of a wide variety of traits. Sex is easily determined and has measurable effects on recognizable morphology; neurobiological circuits; susceptibility to autoimmune disease, diabetes, asthma, cardiovascular and psychiatric disease; and quantitative traits like blood pressure, obesity and lipid levels, among others. In this study, we evaluated sex-specific heritability and genome-wide linkages for 17 quantitative traits in the Hutterites. The results of this study could have important implications for mapping complex trait genes.


Journal of Medical Genetics | 2009

Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders

David T. Miller; Yiping Shen; Lauren A. Weiss; Joshua M. Korn; Irina Anselm; Carolyn Bridgemohan; Gerald F. Cox; Hope Dickinson; Jennifer K. Gentile; David J. Harris; Vijay Hegde; Rachel Hundley; Omar Khwaja; Sanjeev V. Kothare; Christina Luedke; Ramzi Nasir; Annapurna Poduri; Kiran Prasad; Peter Raffalli; Ann Reinhard; Sharon E. Smith; Magdi M. Sobeih; Janet S. Soul; Joan M. Stoler; Masanori Takeoka; Wen-Hann Tan; Joseph V. Thakuria; Robert Wolff; Roman Yusupov; James F. Gusella

Background: Segmental duplications at breakpoints (BP4–BP5) of chromosome 15q13.2q13.3 mediate a recurrent genomic imbalance syndrome associated with mental retardation, epilepsy, and/or electroencephalogram (EEG) abnormalities. Patients: DNA samples from 1445 unrelated patients submitted consecutively for clinical array comparative genomic hybridisation (CGH) testing at Children’s Hospital Boston and DNA samples from 1441 individuals with autism from 751 families in the Autism Genetic Resource Exchange (AGRE) repository. Results: We report the clinical features of five patients with a BP4–BP5 deletion, three with a BP4–BP5 duplication, and two with an overlapping but smaller duplication identified by whole genome high resolution oligonucleotide array CGH. These BP4–BP5 deletion cases exhibit minor dysmorphic features, significant expressive language deficits, and a spectrum of neuropsychiatric impairments that include autism spectrum disorder, attention deficit hyperactivity disorder, anxiety disorder, and mood disorder. Cognitive impairment varied from moderate mental retardation to normal IQ with learning disability. BP4–BP5 covers ∼1.5 Mb (chr15:28.719–30.298 Mb) and includes six reference genes and 1 miRNA gene, while the smaller duplications cover ∼500 kb (chr15:28.902–29.404 Mb) and contain three reference genes and one miRNA gene. The BP4–BP5 deletion and duplication events span CHRNA7, a candidate gene for seizures. However, none of these individuals reported here have epilepsy, although two have an abnormal EEG. Conclusions: The phenotype of chromosome 15q13.2q13.3 BP4–BP5 microdeletion/duplication syndrome may include features of autism spectrum disorder, a variety of neuropsychiatric disorders, and cognitive impairment. Recognition of this broader phenotype has implications for clinical diagnostic testing and efforts to understand the underlying aetiology of this syndrome.


Molecular Psychiatry | 2003

Sodium channels SCN1A, SCN2A and SCN3A in familial autism.

Lauren A. Weiss; Andrew Escayg; Jennifer A. Kearney; Michelle Trudeau; Bryan T. MacDonald; M Mori; Jennifer Reichert; Joseph D. Buxbaum; Miriam H. Meisler

Autism is a psychiatric disorder with estimated heritability of 90%. One-third of autistic individuals experience seizures. A susceptibility locus for autism was mapped near a cluster of voltage-gated sodium channel genes on chromosome 2. Mutations in two of these genes, SCN1A and SCN2A, result in the seizure disorder GEFS+. To evaluate these sodium channel genes as candidates for the autism susceptibility locus, we screened for variation in coding exons and splice sites in 117 multiplex autism families. A total of 27 kb of coding sequence and 3 kb of intron sequence were screened. Only six families carried variants with potential effects on sodium channel function. Five coding variants and one lariat branchpoint mutation were each observed in a single family, but were not present in controls. The variant R1902C in SCN2A is located in the calmodulin binding site and was found to reduce binding affinity for calcium-bound calmodulin. R542Q in SCN1A was observed in one autism family and had previously been identified in a patient with juvenile myoclonic epilepsy. The effect of the lariat branchpoint mutation was tested in cultured lymphoblasts. Additional population studies and functional tests will be required to evaluate pathogenicity of the coding and lariat site variants. SNP density was 1/kb in the genomic sequence screened. We report 38 sodium channel SNPs that will be useful in future association and linkage studies.


PLOS Genetics | 2012

Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at Young Versus Mature Ages

Maggie L. Chow; Tiziano Pramparo; Mary E. Winn; Cynthia Carter Barnes; Hai Ri Li; Lauren A. Weiss; Jian Bing Fan; Sarah S. Murray; Craig April; Haim Belinson; Xiang-Dong Fu; Anthony Wynshaw-Boris; Nicholas J. Schork; Eric Courchesne

Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons, cortical overgrowth, and neural dysfunction in autism.


Molecular Autism | 2013

SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs)

Brett S. Abrahams; Dan E. Arking; Daniel B. Campbell; Mefford Hc; Eric M. Morrow; Lauren A. Weiss; Idan Menashe; Tim Wadkins; Sharmila Banerjee-Basu; Alan Packer

New technologies enabling genome-wide interrogation have led to a large and rapidly growing number of autism spectrum disorder (ASD) candidate genes. Although encouraging, the volume and complexity of these data make it challenging for scientists, particularly non-geneticists, to comprehensively evaluate available evidence for individual genes. Described here is the Gene Scoring module within SFARI Gene 2.0 (https://gene.sfari.org/autdb/GS_Home.do), a platform developed to enable systematic community driven assessment of genetic evidence for individual genes with regard to ASD.


American Journal of Human Genetics | 2005

Sex-Specific Genetic Architecture of Whole Blood Serotonin Levels

Lauren A. Weiss; Mark Abney; Edwin H. Cook; Carole Ober

Recently, a quantitative-trait locus (QTL) for whole blood serotonin level was identified in a genomewide linkage and association study in a founder population. Because serotonin level is a sexually dimorphic trait, in the present study, we evaluated the sex-specific genetic architecture of whole blood serotonin level in the same population. Here, we use an extended homozygosity-by-descent linkage method that is suitable for large complex pedigrees. Although both males and females have high broad heritability (H2=0.99), females have a higher additive component (h2=0.63 in females; h2=0.27 in males). Furthermore, the serotonin QTL on 17q that was identified previously in this population, integrin beta 3 (ITGB3), and a novel locus on 2q influence serotonin levels only in males, whereas linkage to a region on chromosome 6q is specific to females. Both sexes contribute to linkage signals on 12q and 16p. There were, overall, more associations meeting criteria for suggestive significance in males than in females, including those of ITGB3 and the serotonin transporter gene (5HTT). This analysis is consistent with heritable sexual dimorphism in whole blood serotonin levels resulting from the effects of a combination of sex-specific and sex-independent loci.


Expert Review of Molecular Diagnostics | 2009

Autism genetics: emerging data from genome-wide copy-number and single nucleotide polymorphism scans.

Lauren A. Weiss

Autism and related traits are highly heritable but cannot be explained by currently known genetic risk factors. Therefore, the advent of genome-wide single nucleotide polymorphism (SNP) and copy number variant (CNV) microarray technologies heralded identification of additional autism loci. CNVs associated with autism seem to show variable expressivity, also leading to other phenotypes, such as schizophrenia, mental retardation/developmental delay and epilepsy. Initial genome-wide SNP-association studies have each identified a single novel associated locus with modest effect. Based on the lessons from other complex common disease, larger sample sizes and meta-analyses are likely to identify additional SNP loci, and the genes implicated may act on multiple related disorders. Even if common alleles or rare variants hold little predictive value, neurodevelopmental pathways disrupted in autism may be identified. Future research might yet uncover common CNV risk loci and rare single nucleotide risk alleles, which are currently difficult to detect. The genetic architecture and phenotypic heterogeneity identified so far suggest additional approaches, such as population-based research and study of relevant neurobiological endophenotypes.


Journal of Bone and Mineral Research | 2006

Leptin predicts BMD and bone resorption in older women but not older men: the Rancho Bernardo study.

Lauren A. Weiss; Elizabeth Barrett-Connor; Denise von Mühlen; Patricia Clark

We studied the relation of leptin to bone, bone loss, and bone turnover in community‐dwelling men and women. Leptin predicted higher BMD and lower bone turnover only in women. Leptin was not associated with 4‐year bone loss in either sex.


European Journal of Human Genetics | 2006

Variation in ITGB3 is associated with whole-blood serotonin level and autism susceptibility

Lauren A. Weiss; Gulum Kosova; Ryan J. Delahanty; Lan Jiang; Edwin H. Cook; Carole Ober; James S. Sutcliffe

Autism is a pervasive developmental disorder affecting more males than females. Heritability estimates for autism can rise above 90%, and genes influencing the serotonin system are strong candidates for autism susceptibility genes, as drugs selectively acting on the serotonin system are some of the most effective treatments for maladaptive behaviors seen in autism. ITGB3 was recently identified as a male quantitative trait locus (QTL) for whole-blood serotonin levels in the Hutterites (P=0.0003). Here, we demonstrate associations between variation in ITGB3 and serotonin levels in two outbred samples (P=0.010 and 0.015). Lastly, we show that a coding variant of ITGB3 is associated with autism susceptibility in a large multiplex sample (P=0.00082), and that this variation has different effects in males and females (P=0.0018).

Collaboration


Dive into the Lauren A. Weiss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michela Traglia

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Edwin H. Cook

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Erik M. Ullian

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathryn Tsang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erika Yeh

University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge