Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauren E. Flynn is active.

Publication


Featured researches published by Lauren E. Flynn.


Biomaterials | 2010

The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells.

Lauren E. Flynn

The development of an engineered adipose tissue substitute, capable of supporting reliable, predictable, and complete fat tissue formation, would be of significant value in the fields of plastic and reconstructive surgery. Towards the goal of engineering an optimized microenvironment for adipogenesis, a decellularization strategy was developed for adipose tissue, which yielded 3-D scaffolds with preserved extracellular matrix architecture. A significant volume of scaffolding material could be obtained from a human tissue source that is commonly discarded. Histology, immunohistochemistry, and scanning electron microscopy confirmed the efficacy and reproducibility of the approach, and also indicated that the basement membrane was conserved in the processed matrix, including laminin and collagen type IV. Seeding experiments with human adipose-derived stem cells indicated that the decellularized adipose tissue (DAT) provided an inductive microenvironment for adipogenesis, supporting the expression of the master regulators PPARgamma and CEBPalpha, without the need for exogenous differentiation factors. High levels of adipogenic gene expression and glycerol-3-phosphate dehydrogenase activity were observed in the induced DAT scaffolds, as compared to cells grown in monolayer or cell aggregate culture. The protein data emphasized the importance of the cell donor source in the development of tissue-engineering strategies for large-volume soft tissue regeneration.


Biomaterials | 2003

Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering

Lauren E. Flynn; Paul D. Dalton; Molly S. Shoichet

We have developed a method to create longitudinally oriented channels within poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels for neural tissue engineering applications. Incorporated into an entubulation strategy, these scaffolds have the potential to enhance nerve regeneration after transection injuries of either the spinal cord or the peripheral nerve by increasing the available surface area and providing guidance to extending axons and invading cells. The fabrication process is straightforward and the resultant scaffolds are highly reproducible. Polycaprolactone (PCL) fibers were extruded and embedded in transparent, crosslinked pHEMA gels. Sonication of the pHEMA/PCL composite in acetone resulted in the complete dissolution of the PCL, leaving longitudinally oriented, fiber-free channels in the pHEMA gel. Regulating the size and quantity of the PCL fibers allowed us to control the diameter and number of channels. Small and large channel scaffolds were fabricated and thoroughly characterized. The small channel scaffolds had 142+/-7 channels, with approximately 75% of the channels in the 100-200 micro m size range. The large channel scaffolds had 37+/-1 channels, with approximately 77% of the channels in the 300-400 micro m range. The equilibrium water content (EWC), porosity and compressive modulus were measured for each of the structures. Small and large channel scaffolds had, respectively, EWCs of 55.0+/-1.2% and 56.2+/-2.9%, porosities of 35+/-1% and 40+/-1% and compressive moduli of 191+/-7 and 182+/-4kPa.


Biomaterials | 2014

Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells.

Hoi Ki Cheung; Tim Tian Y. Han; Dale Marecak; John F. Watkins; Brian G. Amsden; Lauren E. Flynn

An injectable tissue-engineered adipose substitute that could be used to deliver adipose-derived stem cells (ASCs), filling irregular defects and stimulating natural soft tissue regeneration, would have significant value in plastic and reconstructive surgery. With this focus, the primary aim of the current study was to characterize the response of human ASCs encapsulated within three-dimensional bioscaffolds incorporating decellularized adipose tissue (DAT) as a bioactive matrix within photo-cross-linkable methacrylated glycol chitosan (MGC) or methacrylated chondroitin sulphate (MCS) delivery vehicles. Stable MGC- and MCS-based composite scaffolds were fabricated containing up to 5 wt% cryomilled DAT through initiation with long-wavelength ultraviolet light. The encapsulation strategy allows for tuning of the 3-D microenvironment and provides an effective method of cell delivery with high seeding efficiency and uniformity, which could be adapted as a minimally-invasive in situ approach. Through in vitro cell culture studies, human ASCs were assessed over 14 days in terms of viability, glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, adipogenic gene expression and intracellular lipid accumulation. In all of the composites, the DAT functioned as a cell-supportive matrix that enhanced ASC viability, retention and adipogenesis within the gels. The choice of hydrogel also influenced the cell response, with significantly higher viability and adipogenic differentiation observed in the MCS composites containing 5 wt% DAT. In vivo analysis in a subcutaneous Wistar rat model at 1, 4 and 12 weeks showed superior implant integration and adipogenesis in the MCS-based composites, with allogenic ASCs promoting cell infiltration, angiogenesis and ultimately, fat formation.


Biomaterials | 2008

Proliferation and differentiation of adipose-derived stem cells on naturally derived scaffolds

Lauren E. Flynn; Glenn D. Prestwich; John L. Semple; Kimberly A. Woodhouse

A tissue-engineered substitute that facilitates large-volume regeneration of the subcutaneous adipose tissue layer is needed for reconstructive plastic surgery. Towards this goal, we describe the in vitro culture of primary human adipose-derived stem cells (ASC) seeded into placental decellular matrix (PDM) and cross-linked hyaluronan (XLHA) scaffolds. Specifically, we evaluated cellular proliferation and adipogenic differentiation in the PDM, XLHA, and PDM combined with XLHA scaffolds. Cellular proliferation, viability, and glucose consumption were determined prior to the induction of differentiation. Adipogenesis within each of the scaffolds was investigated through gene expression analysis using end point and real time reverse transcriptase polymerase chain reaction (RT-PCR). The results indicate that the cell-adhesive PDM scaffolds facilitated proliferation and viability, while differentiation was augmented when the cells were encapsulated in the non-adhesive XLHA gels.


Organogenesis | 2008

Adipose tissue engineering with cells in engineered matrices

Lauren E. Flynn; Kimberly A. Woodhouse

Tissue engineering has shown promise for the development of constructs to facilitate large volume soft tissue augmentation in reconstructive and cosmetic plastic surgery. This article reviews the key progress to date in the field of adipose tissue engineering. In order to effectively design a soft tissue substitute, it is critical to understand the native tissue environment and function. As such, the basic physiology of adipose tissue is described and the process of adipogenesis is discussed. In this article, we have focused on tissue engineering using a cell-seeded scaffold approach, where engineered extracellular matrix substitutes are seeded with exogenous cells that may contribute to the regenerative response. The strengths and limitations of each of the possible cell sources for adipose tissue engineering, including adipose-derived stem cells, are detailed. We briefly highlight some of the results from the major studies to date, involving a range of synthetic and naturally derived scaffolds. While these studies have shown that adipose tissue regeneration is possible, more research is required to develop optimized constructs that will facilitate safe, predictable, and long-term augmentation in clinical applications.


Journal of Biomedical Materials Research Part A | 2009

Adipose tissue engineering in vivo with adipose-derived stem cells on naturally derived scaffolds.

Lauren E. Flynn; Glenn D. Prestwich; John L. Semple; Kimberly A. Woodhouse

Placental decellular matrix (PDM) and PDM combined with cross-linked hyaluronan (XLHA) scaffolds, seeded with primary human adipose-derived stem cells (ASC), were investigated in a subcutaneous athymic mouse model. The in vivo response at 3 and 8 weeks was characterized using histological and immunohistochemical staining. Fibrous capsule formation was assessed and the relative number of adipocytes in each scaffold was quantified. Undifferentiated ASC were localized using immunostaining for human vimentin. Unilocular and multilocular adipocytes were identified by intracellular lipid accumulation. Staining for murine CD31 assessed implant vascularization. Both scaffolds macroscopically maintained their three-dimensional volume and supported mature adipocyte populations in vivo. There was evidence of implant integration and a host contribution to the adipogenic response. The results suggested that incorporating the XLHA had a positive effect in terms of angiogenesis and adipogenesis. Overall, the PDM and PDM with XLHA scaffolds showed great promise for adipose tissue regeneration.


Biomaterials | 2012

The performance of decellularized adipose tissue microcarriers as an inductive substrate for human adipose-derived stem cells.

Allison E.B. Turner; Claire Yu; Juares Bianco; John F. Watkins; Lauren E. Flynn

With the aim of developing a clinically-translatable cell expansion and delivery vehicle for adipose tissue engineering, the adipogenic differentiation of human adipose-derived stem cells (ASCs) was investigated on microcarriers fabricated from human decellularized adipose tissue (DAT). ASCs seeded on the DAT microcarriers and cultured in adipogenic differentiation medium within a low-shear spinner culture system demonstrated high levels of adipogenic differentiation, as measured by the expression of adipogenic genes, glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, and intracellular lipid accumulation. In contrast, gelatin microcarrier controls did not demonstrate significant adipogenesis, emphasizing the role of the native matrix in mediating ASC differentiation. Interestingly, ASCs cultured on the DAT microcarriers in proliferation medium expressed elevated levels of the adipogenic markers, suggesting that the DAT provided an adipo-inductive substrate for the human ASCs. In vivo testing of the DAT and gelatin microcarriers in a subcutaneous Wistar rat model confirmed injectability and demonstrated stable volume retention over 28 days. Under histological analysis, the DAT microcarriers demonstrated no evidence of immunogenicity or cytotoxicity, with the DAT supporting cellular infiltration and tissue remodeling. Pre-seeding the DAT microcarriers with allogenic rat ASCs enhanced cellularity and angiogenesis within the implant region.


Stem Cells Translational Medicine | 2014

Comparison of Human Adipose-Derived Stem Cells Isolated from Subcutaneous, Omental, and Intrathoracic Adipose Tissue Depots for Regenerative Applications

Valerio Russo; Claire Yu; Paul Belliveau; Andrew J. Hamilton; Lauren E. Flynn

Adipose tissue is an abundant source of multipotent progenitor cells that have shown promise in regenerative medicine. In humans, fat is primarily distributed in the subcutaneous and visceral depots, which have varying biochemical and functional properties. In most studies to date, subcutaneous adipose tissue has been investigated as the adipose‐derived stem cell (ASC) source. In this study, we sought to develop a broader understanding of the influence of specific adipose tissue depots on the isolated ASC populations through a systematic comparison of donor‐matched abdominal subcutaneous fat and omentum, and donor‐matched pericardial adipose tissue and thymic remnant samples. We found depot‐dependent and donor‐dependent variability in the yield, viability, immunophenotype, clonogenic potential, doubling time, and adipogenic and osteogenic differentiation capacities of the ASC populations. More specifically, ASCs isolated from both intrathoracic depots had a longer average doubling time and a significantly higher proportion of CD34+ cells at passage 2, as compared with cells isolated from subcutaneous fat or the omentum. Furthermore, ASCs from subcutaneous and pericardial adipose tissue demonstrated enhanced adipogenic differentiation capacity, whereas ASCs isolated from the omentum displayed the highest levels of osteogenic markers in culture. Through cell culture analysis under hypoxic (5% O2) conditions, oxygen tension was shown to be a key mediator of colony‐forming unit‐fibroblast number and osteogenesis for all depots. Overall, our results suggest that depot selection is an important factor to consider when applying ASCs in tissue‐specific cell‐based regenerative therapies, and also highlight pericardial adipose tissue as a potential new ASC source.


Biomaterials | 2014

Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury.

Valerio Russo; Stuart Young; Andrew J. Hamilton; Brian G. Amsden; Lauren E. Flynn

Myocardial infarction (MI) is one of the leading causes of mortality worldwide and is associated with irreversible cardiomyocyte death and pathological remodeling of cardiac tissue. In the past 15 years, several animal models have been developed for pre-clinical testing to assess the potential of stem cells for functional tissue regeneration and the attenuation of left ventricular remodeling. The promising results obtained in terms of improved cardiac function, neo-angiogenesis and reduction in infarct size have motivated the initiation of clinical trials in humans. Despite the potential, the results of these studies have highlighted that the effective delivery and retention of viable cells within the heart remain significant challenges that have limited the therapeutic efficacy of cell-based therapies for treating the ischemic myocardium. In this review, we discuss key elements for designing clinically translatable cell-delivery approaches to promote myocardial regeneration. Key topics addressed include cell selection, with a focus on mesenchymal stem cells derived from the bone marrow (bMSCs) and adipose tissue (ASCs), including a discussion of their potential mechanisms of action. Natural and synthetic biomaterials that have been investigated as injectable cell delivery vehicles for cardiac applications are critically reviewed, including an analysis of the role of the biomaterials themselves in the therapeutic scheme.


Biomacromolecules | 2012

Co-delivery of Adipose-Derived Stem Cells and Growth Factor- Loaded Microspheres in RGD-Grafted N-Methacrylate Glycol Chitosan Gels for Focal Chondral Repair

Abby Sukarto; Claire Yu; Lauren E. Flynn; Brian G. Amsden

The coencapsulation of growth factor-loaded microspheres with adipose-derived stem cells (ASCs) within a hydrogel matrix was studied as a potential means to enhance ASC chondrogenesis in the development of a cell-based therapeutic strategy for the regeneration of partial thickness chondral defects. A photopolymerizable N-methacrylate glycol chitosan (MGC) was employed to form an in situ gel used to encapsulate microspheres loaded with bone morphogenetic protein 6 (BMP-6) and transforming growth factor-β3 (TGF-β3) with human ASCs. ASC viability and retention were enhanced when the Youngs modulus of the MGC ranged between 225 and 380 kPa. Grafting an RGD-containing peptide onto the MGC backbone (RGD-MGC) improved ASC viability within the gels, remaining at greater than 90% over 14 days in culture. The effects of BMP-6 and TGF-β3 released from the polymer microspheres on ASC chondrogenesis were assessed, and the level of differentiation was compared to ASCs in control gels containing nongrowth factor-loaded microspheres cultured with and without the growth factors supplied in the medium. There was enhanced expression of chondrogenic markers at earlier time points when the ASCs were induced with the sustained and local release of BMP-6 and TGF-β3 from the microspheres. More specifically, the normalized glycosaminoglycan and collagen type II protein expression levels were significantly higher than in the controls. In addition, the ratio of collagen type II to type I was significantly higher in the microsphere delivery group and increased over time. End-point RT-PCR analysis supported that there was a more rapid induction and enhancement of ASC chondrogenesis in the controlled release group. Interestingly, in all of the assays, there was evidence of chondrogenic differentiation when the ASCs were cultured in the gels in the absence of growth factor stimulation. Overall, the co-delivery of growth-factor-loaded microspheres and ASCs in RGD-modified MGC gels successfully induced ASC chondrogenesis and is a promising strategy for cartilage repair.

Collaboration


Dive into the Lauren E. Flynn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cody Brown

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Semple

Women's College Hospital

View shared research outputs
Top Co-Authors

Avatar

Valerio Russo

Kingston General Hospital

View shared research outputs
Top Co-Authors

Avatar

Abbas Samani

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Arthi Shridhar

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Tim Tian Y. Han

Kingston General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge