Lauren E. Sergio
York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lauren E. Sergio.
Current Opinion in Neurobiology | 1997
John F. Kalaska; Stephen H. Scott; Paul Cisek; Lauren E. Sergio
Recent studies provide further support for the hypothesis that spatial representations of limb position, target locations, and potential motor actions are expressed in the neuronal activity in parietal cortex. In contrast, precentral cortical activity more strongly expresses processes involved in the selection and execution of motor actions. As a general conceptual framework, these processes may be interpreted in terms of such formalisms as sensorimotor transformations and internal models.
Nature | 2001
Laura Ann Petitto; Siobhan Holowka; Lauren E. Sergio; David J. Ostry
Hearing babies born to deaf parents babble silently with their hands.
European Neurology | 2007
William J. Tippett; Adam Krajewski; Lauren E. Sergio
This study examined the ability of neurologically healthy individuals and individuals with Alzheimer’s disease (AD) to successfully complete procedures involving short-term spatial visuomotor memory tasks, and tasks involving increasingly complex visuomotor transformations. Participants made sliding finger movements over a clear touch-sensitive screen on two separate spatial planes (vertical and horizontal), to visually constant and remembered target positions. Significant main effects were observed between participant groups on reaction time and movement time measures. As well, significant changes in reaction time and movement time were observed within the patient group over the different of any experimental procedures. In addition, as task increased in complexity significant increases in errors were observed in the AD group. Overall, the results reveal that AD patients show substantial declines in their ability to process and integrate visual information to produce motor responses. Therefore, we believe that this psychophysical research provides further evidence that AD, even early stages of AD, can affect anatomical regions supporting vision for action.
Experimental Brain Research | 1994
Lauren E. Sergio; David J. Ostry
We investigated the coordination of mono- and bi-articular muscles during movements involving one or more degrees of freedom at the elbow. Subjects performed elbow flexion (or extension) alone, forearm pronation (or supination) alone, and combinations of the two. In bi-articular muscles such as biceps brachii and pronator teres, the amplitude of agonist electromyographic (EMG) activity was dependent on motion in the two degrees of freedom. Agonist burst amplitudes for combined movements were approximately the sum of the agonist burst amplitudes for movements in the individual degrees of freedom. Activity levels in individual degrees of freedom were, in turn, greater than activity levels observed when a muscle acted as agonist in one degree of freedom and antagonist in the other. Other muscles such as triceps, brachialis, and pronator quadratus acted primarily during motion in a single degree of freedom. The relative magnitude and the timing of activity between sets of muscles also changed with motion in a second degree of freedom. These patterns are comparable with those reported previously in isometric studies.
Experimental Brain Research | 1995
Lauren E. Sergio; David J. Ostry
The present study quantifies electromyographic (EMG) magnitude, timing, and duration in one and two degree of freedom elbow movements involving combinations of flexion-extension and pronation-supination. The aim is to understand the organization of commands subserving motion in individual and multiple degrees of freedom. The muscles tested in this study fell into two categories with respect to agonist burst magnitude: those whose burst magnitude varied with motion in a second degree of freedom at the elbow, and those whose burst magnitude depended on motion in one degree of freedom only. In multiarticular muscles contributing to motion in two degrees of freedom at the elbow, we found that the magnitude of the agonist burst was greatest for movements in which a muscle acted as agonist in both degrees of freedom. The burst magnitudes for one degree of freedom movements were, in turn, greater than for movements in which the muscle was agonist in one degree of freedom and antagonist in the other. It was also found that, for movements in which a muscle acted as agonist in two degrees of freedom, the burst magnitude was, in the majority of cases, not different from the sum of the burst magnitudes in the component movements. When differences occurred, the burst magnitude for the combined movement was greater than the sum of the components. Other measures of EMG activity such as burst onset time and duration were not found to vary in a systematic manner with motion in these two degrees of freedom. It was also seen that several muscles which produced motion in one degree of freedom at the elbow, including triceps brachii (long head), triceps brachii (lateral head), and pronator quadratus displayed first agonist bursts whose magnitude did not vary with motion in a second degree of freedom. However, for the monoarticular elbow flexors brachialis and brachioradialis, agonist burst magnitude was affected by pronation or supination. Lastly, it was observed that during elbow movements in which muscles acted as agonist in one degree of freedom and antagonist in the other, the muscle activity often displayed both agonist and antagonist components in the same movement. It was found that, for pronator teres and biceps brachii, the timing of the bursts was such that there was activity in these muscles concurrent with activity in both pure agonists and pure antagonists. The empirical summation of EMG burst magnitudes and the presence in a single muscle of both agonist and antagonist bursts within a movement suggest that central commands associated with motion in individual degrees of freedom at the elbow may be superimposed to produce elbow movements in two degrees of freedom.
Experimental Brain Research | 1993
Lauren E. Sergio; David J. Ostry
The three-dimensional kinematics of the hindlimb back-wipe were examined in spinal frogs. The component movements were identified and the relationship between stimulus position and hindlimb configuration was assessed. The planes of motion of the hindlimb were examined throughout the movement. The backwipe comprises three essential phases: a placing phase (I), in which the foot is drawn over the back of the frog and placed in a position near to the stimulus; a pre-whisk phase (II), in which the endpoint of the foot moves away from the stimulus; and a whisk/extension phase (III), in which the stimulus is removed. The pre-whisk phase contributes to force production for the whisk/extension (III). In the placing phase a systematic relationship was found between limb endpoint position and stimulus position in the rostro-caudal direction. The hip, knee and metatarsal joint angles were related to the position of the endpoint in the rostro-caudal direction. However, different frogs tended to adopt different strategies to remove the stimulus. In one strategy, when the knee angle was strongly related to the rostro-caudal stimulus position, the metatarsal angle was weakly related and vice versa. Other strategies were observed as well. There was no adjustment in limb endpoint position for stimulus placement in the medial-lateral direction. Consistent with this finding, the point on the foot at which stimulus contact occurred changed systematically as a function of medial-lateral stimulus placement. Thus, in order to remove the stimulus in different medial-lateral positions, the frog used a different part of the foot rather than moving the foot in the direction of the stimulus. In two frogs a relationship was observed between the elevation of the femur and the medial-lateral stimulus position. The motion planes of the hindlimb were studied by examining the instantaneous plane of motion of the endpoint and the planes of motion of adjacent limb segments. The motion of the endpoint was found not to be planar in any phase of the wipe. In contrast, planar motion of the femur and tibia was observed for all phases. Systematic changes in the orientation of these planes characterized the different phases. The position of the hindlimb was found to be variable prior to the placing phase. This variability was not related to stimulus position. However, in trials with multiple wipes, once an initial limb configuration was assumed, the limb returned to this configuration before each wipe in the sequence. Evidence for motor equivalence was sought in two ways. The pattern of hindlimb joint angles corresponding to a fixed position of the limb endpoint was examined, and the variability of the endpoint positions was examined for fixed stimulus positions. It was found that for a given endpoint position there was little variation in joint angles. However, for a fixed stimulus position there was greater variation in the endpoint position at the end of the placing phase.
Experimental Brain Research | 2005
Michael Vesia; Helena Vander; Xiaogang Yan; Lauren E. Sergio
The present psychophysical study compares motor planning during goal-directed reaching movements and isometric spatial force generation. Our objective is to characterize the extent to which the motor system accounts for the biomechanical details of an impending reach. One issue that the nervous system must take into account when transforming a spatial sensory signal into an intrinsic pattern of joint torques is that of limb dynamics, including intersegmental dynamics and inertial anisotropy of the arm. These will act to displace the hand away from a straight path to an object. In theory, if the nervous system accounts for movement-related limb dynamics prior to its initial motor output, early force direction for a movement will differ from an isometric force to the same spatial target. Alternatively, biomechanical details of motor behavior may be implemented into the motor act following its initiation. Limb position and force output at the wrist were recorded while subjects displaced a cursor to targets viewed on a computer monitor. To generate isometric forces, a magnetic brake held a mechanical linkage supporting the arm in place. Subjects were cued to displace the cursor by using either isometric force or limb movement. On random trials, a movement was cued but an isometric force was unexpectedly required. Results show that there is not a significant directional difference in the initial force trajectory when planning a movement versus planning an isometric force. These findings suggest that the motor system may initially use a coarse approximation of movement-related limb dynamics, allowing for the refinement of the motor plan as the movement unfolds.
Journal of Neurophysiology | 2005
Lauren E. Sergio; Catherine Hamel-Pâquet; John F. Kalaska
Journal of Neurophysiology | 1998
Lauren E. Sergio; John F. Kalaska
Journal of Neurophysiology | 2003
Lauren E. Sergio; John F. Kalaska