Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauren F. Greenlee is active.

Publication


Featured researches published by Lauren F. Greenlee.


Water Research | 2009

Reverse osmosis desalination: Water sources, technology, and today's challenges

Lauren F. Greenlee; Desmond F. Lawler; Benny D. Freeman; Benoit Marrot; Philippe Moulin

Reverse osmosis membrane technology has developed over the past 40 years to a 44% share in world desalting production capacity, and an 80% share in the total number of desalination plants installed worldwide. The use of membrane desalination has increased as materials have improved and costs have decreased. Today, reverse osmosis membranes are the leading technology for new desalination installations, and they are applied to a variety of salt water resources using tailored pretreatment and membrane system design. Two distinct branches of reverse osmosis desalination have emerged: seawater reverse osmosis and brackish water reverse osmosis. Differences between the two water sources, including foulants, salinity, waste brine (concentrate) disposal options, and plant location, have created significant differences in process development, implementation, and key technical problems. Pretreatment options are similar for both types of reverse osmosis and depend on the specific components of the water source. Both brackish water and seawater reverse osmosis (RO) will continue to be used worldwide; new technology in energy recovery and renewable energy, as well as innovative plant design, will allow greater use of desalination for inland and rural communities, while providing more affordable water for large coastal cities. A wide variety of research and general information on RO desalination is available; however, a direct comparison of seawater and brackish water RO systems is necessary to highlight similarities and differences in process development. This article brings to light key parameters of an RO process and process modifications due to feed water characteristics.


Water Research | 2010

The effect of antiscalant addition on calcium carbonate precipitation for a simplified synthetic brackish water reverse osmosis concentrate.

Lauren F. Greenlee; Fabrice Testa; Desmond F. Lawler; Benny D. Freeman; Philippe Moulin

The primary limitations to inland brackish water reverse osmosis (RO) desalination are the cost and technical feasibility of concentrate disposal. To decrease concentrate volume, a side-stream process can be used to precipitate problematic scaling salts and remove the precipitate with a solid/liquid separation step. The treated concentrate can then be purified through a secondary reverse osmosis stage to increase overall recovery and decrease the volume of waste requiring disposal. Antiscalants are used in an RO system to prevent salt precipitation but might affect side-stream concentrate treatment. Precipitation experiments were performed on a synthetic RO concentrate with and without antiscalant; of particular interest was the precipitation of calcium carbonate. Particle size distributions, calcium precipitation, microfiltration flux, and scanning electron microscopy were used to evaluate the effects of antiscalant type, antiscalant concentration, and precipitation pH on calcium carbonate precipitation and filtration. Results show that antiscalants can decrease precipitate particle size and change the shape of the particles; smaller particles can cause an increase in microfiltration flux decline during the solid/liquid separation step. The presence of antiscalant during precipitation can also decrease the mass of precipitated calcium carbonate.


Environmental Science & Technology | 2012

Kinetics of zero valent iron nanoparticle oxidation in oxygenated water.

Lauren F. Greenlee; Jessica D. Torrey; Robert L. Amaro; Justin M. Shaw

Zero valent iron (ZVI) nanoparticles are versatile in their ability to remove a wide variety of water contaminants, and ZVI-based bimetallic nanoparticles show increased reactivity above that of ZVI alone. ZVI nanoparticles degrade contaminants through the reactive species (e.g., OH*, H(2(g)), H(2)O(2)) that are produced during iron oxidation. Measurement and modeling of aqueous ZVI nanoparticle oxidation kinetics are therefore necessary to optimize nanoparticle design. Stabilized ZVI and iron-nickel nanoparticles of approximately 150 nm in diameter were synthesized through solution chemistry, and nanoparticle oxidation kinetics were determined via measured mass change using a quartz crystal microbalance (QCM). Under flowing aerated water, ZVI nanoparticles had an initial exponential growth behavior indicating surface-dominated oxidation controlled by migration of species (H(2)O and O(2)) to the surface. A region of logarithmic growth followed the exponential growth which, based on the Mott-Cabrera model of thin oxide film growth, suggests a reaction dominated by movement of species (e.g., iron cations and oxygen anions) through the oxide layer. The presence of ethanol or a nickel shell on the ZVI nanoparticles delayed the onset of iron oxidation and reduced the extent of oxidation. In oxygenated water, ZVI nanoparticles oxidized primarily to the iron oxide-hydroxide lepidocrocite.


Water Research | 2010

Effect of antiscalants on precipitation of an RO concentrate: Metals precipitated and particle characteristics for several water compositions

Lauren F. Greenlee; Fabrice Testa; Desmond F. Lawler; Benny D. Freeman; Philippe Moulin

Inland brackish water reverse osmosis (RO) is economically and technically limited by the large volume of salty waste (concentrate) produced. The use of a controlled precipitation step, followed by solid/liquid separation (filtration), has emerged as a promising side-stream treatment process to treat reverse osmosis concentrate and increase overall system recovery. The addition of antiscalants to the RO feed prevents precipitation within the membrane system but might have a deleterious effect on a concentrate treatment process that uses precipitation to remove problematic precipitates. The effects of antiscalant type and concentration on salt precipitation and precipitate particle morphology were evaluated for several water compositions. The primary precipitate for the synthetic brackish waters tested was calcium carbonate; the presence of magnesium, sulfate, minor ions, and antiscalant compounds affected the amount of calcium precipitated, as well as the phases of calcium carbonate formed during precipitation. Addition of antiscalant decreased calcium precipitation but increased incorporation of magnesium and sulfate into precipitating calcium carbonate. Antiscalants prevented the growth of nucleated precipitates, resulting in the formation of small (100-200 nm diameter) particles, as well as larger (6-10 microm) particles. Elemental analysis revealed changes in composition and calcium carbonate polymorph with antiscalant addition and antiscalant type. Results indicate that the presence of antiscalants does reduce the extent of calcium precipitation and can worsen subsequent filtration performance.


Desalination and Water Treatment | 2012

Development of stabilized zero valent iron nanoparticles

Lauren F. Greenlee; Stephanie A. Hooker

Abstract Many organic micropollutants have recently been identified in natural water sources and treated drinking water. Often, these compounds are not successfully degraded or removed by current water treatment processes. There is an increasing interest in developing new water treatment technologies based on catalytic nanoparticles to take advantage of enhanced particle reactivity at the nanoscale. Our current research focuses on the development and characterization of zero valent iron (ZVI) nanoparticles to improve nanoparticle design and enhance particle reactivity. The focus of this study was to evaluate two different iron salts as starting materials and to evaluate three different carboxymethyl cellulose stabilizers. The stabilizers were evaluated for their ability to stabilize ZVI nanoparticles during synthesis and to produce dispersed nanoparticles with narrow size distributions. Nanoparticles with a modal particle diameter of less than 50 nm were obtained. Particles were characterized using electr...


Journal of Research of the National Institute of Standards and Technology | 2015

Processing and Characterization of Nanoparticle Coatings for Quartz Crystal Microbalance Measurements.

Jessica D. Torrey; Teresa L. Kirschling; Lauren F. Greenlee

The quartz-crystal microbalance is a sensitive and versatile tool for measuring adsorption of a variety of compounds (e.g. small molecules, polymers, biomolecules, nanoparticles and cells) to surfaces. While the technique has traditionally been used for measuring adsorption to flat surfaces and thin ridged films, it can also be extended to study adsorption to nanoparticle surfaces when the nanoparticles are fixed to the crystal surface. The sensitivity and accuracy of the measurement depend on the users’ ability to reproducibly prepare a thin uniform nanoparticle coating. This study evaluated four coating techniques, including spin coating, spray coating, drop casting, and electrophoretic deposition, for two unique particle chemistries [nanoscale zero valent iron (nZVI) and titanium dioxide (TiO2)] to produce uniform and reproducible nanoparticle coatings for real-time quartz-crystal microbalance measurements. Uniform TiO2 coatings were produced from a 50 mg/mL methanol suspension via spin coating. Nanoscale zero-valent iron was best applied by spray coating a low concentration 1.0 mg/mL suspended in methanol. The application of multiple coatings, rather than an increase in the suspension concentration, was the best method to increase the mass of nanoparticles on the crystal surface while maintaining coating uniformity. An upper mass threshold was determined to be approximately 96 µg/cm2; above this mass, coatings no longer maintained their uniform rigid characteristic, and a low signal to noise ratio resulted in loss of measurable signal from crystal resonances above the fundamental.


Nano Research | 2015

Basic science of water: Challenges and current status towards a molecular picture

Sheng Meng; Lauren F. Greenlee; Yuen Ron Shen; Enge Wang

Rapid developments in both fundamental science and modern technology that target water-related problems, including the physical nature of our planet and environment, the origin of life, energy production via water splitting, and water purification, all call for a molecular-level understanding of water. This invokes relentless efforts to further our understanding of the basic science of water. Current challenges to achieve a molecular picture of the peculiar properties and behavior of water are discussed herein, with a particular focus on the structure and dynamics of bulk and surface water, the molecular mechanisms of water wetting and splitting, application-oriented research on water decontamination and desalination, and the development of complementary techniques for probing water at the nanoscale.


Environmental Science: Water Research & Technology | 2015

Oxidation behavior of zero-valent iron nanoparticles in mixed matrix water purification membranes

Jessica D. Torrey; Jason P. Killgore; Nicholas M. Bedford; Lauren F. Greenlee

Morphological changes resulting from the oxidation of zero valent iron (ZVI) nanoparticles were measured as an assessment of their mechanical robustness in mixed matrix membranes for water treatment applications. Upon oxidation from metallic iron to iron oxide hydroxide, FeO(OH), particles underwent a significant transformation in size and morphology from 100 nm diameter spherical particles to plate-like crystalline particles with a hydrodynamic diameter greater than 450 nm. Atomic force microscopy (AFM) was used to mechanically degrade the FeO(OH) crystallites during repeated imaging. To determine whether similar degradation would occur during water filtration in a mixed matrix membrane, force under standard membrane operating conditions was calculated. Such force calculations were used to compare the shear forces exerted during water flux in a mixed matrix membrane to the normal forces imparted by AFM. Analysis suggested that the oxidized ZVI nanoparticles will experience a 10−19 N maximum shear force in pore channels, much lower than the imaging forces in AFM, suggesting the mechanical stability of the particles during water remediation. Additional quartz crystal microbalance experiments were performed to confirm the mechanical stability of the oxidized iron nanoparticles in the flow environments of ultrafiltration. Taken together, the results of this study demonstrate that the mechanical properties of the nanoparticle composite membranes are such that minimal mechanical degradation of the nanoparticles will occur during water filtration.


Special Edition publication - World Materials Research Institute Forum | 2012

Characterization of Stabilized Zero Valent Iron Nanoparticles

Lauren F. Greenlee; Stephanie A. Hooker

The demonstrated toxicity of certain groups of organic micropollutants in water sources has motivated research in developing novel materials that are able to remove dissolved organic molecules from an aqueous system through adsorption and/or degradation. One approach is to use the enhanced surface properties of nano- sized particles to adsorb, reduce, or oxidize organic contaminants. Our research focuses on the use of catalytic nanoparticles to degrade haloamides, a specific family of disinfection by-products (DBPs) produced during chlorine and chloramine disinfection. This work focuses on the development and characterization of zero valent iron-based catalytic nanoparticles. In particular, different stabilizer compounds are used during nanoparticle synthesis to control the particle size and prevent aggregation. The size, shape, and functional groups of the stabilizer compounds are investigated; the roles of specific chelating groups, such as phosphates and carboxylates, in controlling particle size are compared. Particles are characterized through several techniques including dynamic light scattering, electron microscopy, and measurement of zeta potential.


Nature Catalysis | 2018

Catalysts for nitrogen reduction to ammonia

Shelby L. Foster; Sergio I. P. Bakovic; Royce D. Duda; Sharad Maheshwari; Ross D. Milton; Shelley D. Minteer; Michael J. Janik; Julie N. Renner; Lauren F. Greenlee

AbstractThe production of synthetic ammonia remains dependent on the energy- and capital-intensive Haber–Bosch process. Extensive research in molecular catalysis has demonstrated ammonia production from dinitrogen, albeit at low production rates. Mechanistic understanding of dinitrogen reduction to ammonia continues to be delineated through study of molecular catalyst structure, as well as through understanding the naturally occurring nitrogenase enzyme. The transition to Haber–Bosch alternatives through robust, heterogeneous catalyst surfaces remains an unsolved research challenge. Catalysts for electrochemical reduction of dinitrogen to ammonia are a specific focus of research, due to the potential to compete with the Haber–Bosch process and reduce associated carbon dioxide emissions. However, limited progress has been made to date, as most electrocatalyst surfaces lack specificity towards nitrogen fixation. In this Review, we discuss the progress of the field in developing a mechanistic understanding of nitrogenase-promoted and molecular catalyst-promoted ammonia synthesis and provide a review of the state of the art and scientific needs for heterogeneous electrocatalysts. The artificial synthesis of ammonia remains one of the most important catalytic processes worldwide, over 100 years after its development. In this Review, recent developments in enzymatic, homogeneous and heterogeneous catalysis towards the conversion of nitrogen to ammonia are discussed, with a particular focus on how mechanistic understanding informs catalyst design.

Collaboration


Dive into the Lauren F. Greenlee's collaboration.

Top Co-Authors

Avatar

Benny D. Freeman

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Desmond F. Lawler

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie N. Renner

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benoit Marrot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas M. Bedford

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Nikki S. Rentz

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge