Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauren L. Jantzie is active.

Publication


Featured researches published by Lauren L. Jantzie.


Journal of Cerebral Blood Flow and Metabolism | 2005

Doxycycline reduces cleaved caspase-3 and microglial activation in an animal model of neonatal hypoxia-ischemia

Lauren L. Jantzie; Po-Yin Cheung; Kathryn G. Todd

Neonatal hypoxia-ischemia (HI) is a major contributor to many perinatal neurologic disorders and, thus, the search for therapies and effective treatments for the associated brain damage has become increasingly important. The tetracycline derivative, doxycycline (DOXY), has been reported to be neuroprotective in adult animal models of cerebral ischemia. To investigate the putative neuroprotective effects of DOXY in an animal model of neonatal HI, a time-course study was run such that pups received either DOXY (10 mg/kg) or VEH immediately before hypoxia, 1, 2, or 3 hours after HI (n=6). At 7 days after injury, the pups were euthanized, and the brains were removed and processed for immunohistochemical and Western blot analyses using antibodies against specific markers for neurons, apoptotic markers, microglia, oligodendrocytes, and astrocytes. Results showed that in vulnerable brain regions including the hippocampal formation, thalamus, striatum, cerebral cortex and white matter tracts, DOXY significantly decreased caspase-3 immunoreactivity (a marker of apoptosis), promoted neuronal survival, inhibited microglial activation and reduced reactive astrocytosis compared with VEH-treated HI pups. These effects were found to occur in a time-dependent manner. Taken together, these results strongly suggest that doxycycline has potential as a pharmacological treatment for mild HI in neonates.


Pediatric Research | 2013

Erythropoietin signaling promotes oligodendrocyte development following prenatal systemic hypoxic-ischemic brain injury.

Lauren L. Jantzie; Robert H. Miller; Shenandoah Robinson

Background:Brain injury from preterm birth causes white matter injury (WMI), and it leads to chronic neurological deficits including cerebral palsy, epilepsy, cognitive, and behavioral delay. Immature O4+ oligodendrocytes are particularly vulnerable to WMI. Understanding how the developing brain recovers after injury is essential to finding more effective therapeutic strategies. Erythropoietin (EPO) promotes neuronal recovery after injury; however, its role in enhancing oligodendroglial lineage recovery is unclear. Previously, we found that recombinant EPO (rEPO) treatment enhances myelin basic protein (MBP) expression and functional recovery in adult rats after prenatal transient systemic hypoxia–ischemia (TSHI). We hypothesized that after injury, rEPO would enhance oligodendroglial lineage cell genesis, survival, maturation, and myelination.Methods:In vitro assays were used to define how rEPO contributes to specific stages of oligodendrocyte development and recovery after TSHI.Results:After prenatal TSHI injury, rEPO promotes genesis of oligodendrocyte progenitors from oligodendrospheres, survival of oligodendrocyte precursor cells (OPCs) and O4+ immature oligodendrocytes, O4+ cell process extension, and MBP expression. rEPO did not alter OPC proliferation.Conclusion:Together, these studies demonstrate that EPO signaling promotes critical stages of oligodendroglial lineage development and recovery after prenatal TSHI injury. EPO treatment may be beneficial to preterm and other infant patient populations with developmental brain injury hallmarked by WMI.


Cerebral Cortex | 2015

Developmental Expression of N-Methyl-d-Aspartate (NMDA) Receptor Subunits in Human White and Gray Matter: Potential Mechanism of Increased Vulnerability in the Immature Brain

Lauren L. Jantzie; Delia M. Talos; Michele Jackson; Hyun Kyung Park; Dionne A. Graham; Mirna Lechpammer; Rebecca D. Folkerth; Joseph J. Volpe; Frances E. Jensen

The pathophysiology of perinatal brain injury is multifactorial and involves hypoxia-ischemia (HI) and inflammation. N-methyl-d-aspartate receptors (NMDAR) are present on neurons and glia in immature rodents, and NMDAR antagonists are protective in HI models. To enhance clinical translation of rodent data, we examined protein expression of 6 NMDAR subunits in postmortem human brains without injury from 20 postconceptional weeks through adulthood and in cases of periventricular leukomalacia (PVL). We hypothesized that the developing brain is intrinsically vulnerable to excitotoxicity via maturation-specific NMDAR levels and subunit composition. In normal white matter, NR1 and NR2B levels were highest in the preterm period compared with adult. In gray matter, NR2A and NR3A expression were highest near term. NR2A was significantly elevated in PVL white matter, with reduced NR1 and NR3A in gray matter compared with uninjured controls. These data suggest increased NMDAR-mediated vulnerability during early brain development due to an overall upregulation of individual receptors subunits, in particular, the presence of highly calcium permeable NR2B-containing and magnesium-insensitive NR3A NMDARs. These data improve understanding of molecular diversity and heterogeneity of NMDAR subunit expression in human brain development and supports an intrinsic prenatal vulnerability to glutamate-mediated injury; validating NMDAR subunit-specific targeted therapies for PVL.


Cerebral Cortex | 2015

Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia–Ischemia

Lauren L. Jantzie; Christopher J. Corbett; Daniel J. Firl; Shenandoah Robinson

Preterm birth impacts brain development and leads to chronic deficits including cognitive delay, behavioral problems, and epilepsy. Premature loss of the subplate, a transient subcortical layer that guides development of the cerebral cortex and axonal refinement, has been implicated in these neurological disorders. Subplate neurons influence postnatal upregulation of the potassium chloride co-transporter KCC2 and maturation of γ-amino-butyric acid A receptor (GABAAR) subunits. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) in Sprague-Dawley rats that mimic brain injury from extreme prematurity in humans would cause premature subplate loss and affect cortical layer IV development. Further, we predicted that the neuroprotective agent erythropoietin (EPO) could attenuate the injury. Prenatal TSHI induced subplate neuronal loss via apoptosis. TSHI impaired cortical layer IV postnatal upregulation of KCC2 and GABAAR subunits, and postnatal EPO treatment mitigated the loss (n ≥ 8). To specifically address how subplate loss affects cortical development, we used in vitro mechanical subplate ablation in slice cultures (n ≥ 3) and found EPO treatment attenuates KCC2 loss. Together, these results show that subplate loss contributes to impaired cerebral development, and EPO treatment diminishes the damage. Limitation of premature subplate loss and the resultant impaired cortical development may minimize cerebral deficits suffered by extremely preterm infants.


Journal of Neurosurgery | 2014

Chronic gliosis and behavioral deficits in mice following repetitive mild traumatic brain injury

Rebekah Mannix; Jacqueline Berglass; Justin Berkner; Philippe Moleus; Jianhua Qiu; Nick Andrews; Georgia Gunner; Laura Berglass; Lauren L. Jantzie; Shenandoah Robinson; William P. Meehan

OBJECT With the recent increasing interest in outcomes after repetitive mild traumatic brain injury (rmTBI; e.g., sports concussions), several models of rmTBI have been established. Characterizing these models in terms of behavioral and histopathological outcomes is vital to assess their clinical translatability. The purpose of this study is to provide an in-depth behavioral and histopathological phenotype of a clinically relevant model of rmTBI. METHODS The authors used a previously published weight-drop model of rmTBI (7 injuries in 9 days) in 2- to 3-month-old mice that produces cognitive deficits without persistent loss of consciousness, seizures, gross structural imaging findings, or microscopic evidence of structural brain damage. Injured and sham-injured (anesthesia only) mice were subjected to a battery of behavioral testing, including tests of balance (rotarod), spatial memory (Morris water maze), anxiety (open field plus maze), and exploratory behavior (hole-board test). After behavioral testing, brains were assessed for histopathological outcomes, including brain volume and microglial and astrocyte immunolabeling. RESULTS Compared with sham-injured mice, mice subjected to rmTBI showed increased exploratory behavior and had impaired balance and worse spatial memory that persisted up to 3 months after injury. Long-term behavioral deficits were associated with chronic increased astrocytosis and microgliosis but no volume changes. CONCLUSIONS The authors demonstrate that their rmTBI model results in a characteristic behavioral phenotype that correlates with the clinical syndrome of concussion and repetitive concussion. This model offers a platform from which to study therapeutic interventions for rmTBI.


Molecular and Cellular Neuroscience | 2014

Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury

Lauren L. Jantzie; Paulina Getsy; D.J. Firl; C.G. Wilson; Robert H. Miller; Shenandoah Robinson

Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, and neurodegenerative and cognitive disorders. During development, upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guide the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show that late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis.


Journal of Neuroinflammation | 2014

Complex pattern of interaction between in utero hypoxia-ischemia and intra-amniotic inflammation disrupts brain development and motor function.

Lauren L. Jantzie; Christopher J. Corbett; Jacqueline Berglass; Daniel J. Firl; Julian Flores; Rebekah Mannix; Shenandoah Robinson

BackgroundInfants born preterm commonly suffer from a combination of hypoxia-ischemia (HI) and infectious perinatal inflammatory insults that lead to cerebral palsy, cognitive delay, behavioral issues and epilepsy. Using a novel rat model of combined late gestation HI and lipopolysaccharide (LPS)-induced inflammation, we tested our hypothesis that inflammation from HI and LPS differentially affects gliosis, white matter development and motor impairment during the first postnatal month.MethodsPregnant rats underwent laparotomy on embryonic day 18 and transient systemic HI (TSHI) and/or intra-amniotic LPS injection. Shams received laparotomy and anesthesia only. Pups were born at term. Immunohistochemistry with stereological estimates was performed to assess regional glial loads, and western blots were performed for protein expression. Erythropoietin ligand and receptor levels were quantified using quantitative PCR. Digigait analysis detected gait deficits. Statistical analysis was performed with one-way analysis of variance and post-hoc Bonferonni correction.ResultsMicroglial and astroglial immunolabeling are elevated in TSHI + LPS fimbria at postnatal day 2 compared to sham (both P < 0.03). At postnatal day 15, myelin basic protein expression is reduced by 31% in TSHI + LPS pups compared to shams (P < 0.05). By postnatal day 28, white matter injury shifts from the acute injury pattern to a chronic injury pattern in TSHI pups only. Both myelin basic protein expression (P < 0.01) and the phosphoneurofilament/neurofilament ratio, a marker of axonal dysfunction, are reduced in postnatal day 28 TSHI pups (P < 0.001). Erythropoietin ligand to receptor ratios differ between brains exposed to TSHI and LPS. Gait analyses reveal that all groups (TSHI, LPS and TSHI + LPS) are ataxic with deficits in stride, paw placement, gait consistency and coordination (all P < 0.001).ConclusionsPrenatal TSHI and TSHI + LPS lead to different patterns of injury with respect to myelination, axon integrity and gait deficits. Dual injury leads to acute alterations in glial response and cellular inflammation, while TSHI alone causes more prominent chronic white matter and axonal injury. Both injuries cause significant gait deficits. Further study will contribute to stratification of injury mechanisms in preterm infants, and guide the use of promising therapeutic interventions.


Neurochemistry International | 2006

The effects of doxycycline administration on amino acid neurotransmitters in an animal model of neonatal hypoxia-ischemia

Lauren L. Jantzie; Gail Rauw; Kathryn G. Todd

Neonatal hypoxia-ischemia (HI) is a major contributor to many neurological, psychiatric and behavioral disorders. Previous studies in our laboratory have shown that a one-time dose of doxycycline (DOXY), even when given 3h after HI insult, was neuroprotective and significantly reduced microglial activation and cleaved caspase-3 protein expression in the immature brain. In light of these data, the goal of this study was to investigate the effects of DOXY administration on amino acid neurotransmitters. Post-natal-day 7 rats received DOXY (10mg/kg) or vehicle (VEH) concomitant with the onset of HI, and were euthanized 30 min, 1, 2 or 4h post-HI (n>or=6). Extracted brains were either immediately dissected for frontal cortex, striatum and hippocampal regions, or removed in their entirety and flash frozen in isopentane for histological analyses. Dissected regions were homogenized and aliquots were prepared for high performance liquid chromatography (HPLC) analyses of amino acid levels and brain levels of DOXY. HPLC extraction revealed that systemic administration of DOXY resulted in mean drug levels of 867.1+/-376.1 ng/g of brain tissue. Histological analyses revealed microglial activation, caspase-3 activation and neuronal degeneration consistent with a mild injury in the regions most vulnerable to HI. We found that HI caused significant, time-dependent, regional changes in brain amino acids including glutamate, GABA, alanine, aspartate, asparagine, serine, glutamine, glycine and taurine. HI significantly increased glutamate levels in the hippocampus (HI+VEH=15.8+/-3.1 ng/microg versus control=11.8+/-1.4 ng/microg protein) 4h post-HI (p<0.05). Pups treated with DOXY had lower glutamate levels (13.1+/-2.4 ng/microg) when compared to VEH-treated pups (15.8+/-3.1 ng/microg), however these values failed to reach significance. In addition, DOXY-treated pups had significantly lower alanine (HI+VEH=1.1+/-0.2 ng/microg versus HI+DOXY=0.5+0.1 ng/microg) and serine (HI+VEH=1.4+/-0.4 ng/microg versus HI+DOXY=0.7+0.1 ng/microg) levels in the hippocampus, 4h post-HI. Similar normalizations and significant reductions in alanine and serine were seen in the cortex and striatum. These results show that in addition to its previously reported and well-documented anti-inflammatory and anti-apoptotic properties, DOXY has significant effects on amino acid neurotransmitters.


Journal of Neuroscience Research | 2017

Microstructural and microglial changes after repetitive mild traumatic brain injury in mice.

Shenandoah Robinson; Jacqueline Berglass; Jesse L. Denson; Justin Berkner; Christopher V. Anstine; Jesse L. Winer; Jessie R. Maxwell; Jianhua Qiu; Yirong Yang; Laurel O. Sillerud; William P. Meehan; Rebekah Mannix; Lauren L. Jantzie

Traumatic brain injury (TBI) is a major public health issue, with recently increased awareness of the potential long‐term sequelae of repetitive injury. Although TBI is common, objective diagnostic tools with sound neurobiological predictors of outcome are lacking. Indeed, such tools could help to identify those at risk for more severe outcomes after repetitive injury and improve understanding of biological underpinnings to provide important mechanistic insights. We tested the hypothesis that acute and subacute pathological injury, including the microgliosis that results from repeated mild closed head injury (rmCHI), is reflected in susceptibility‐weighted magnetic resonance imaging and diffusion‐tensor imaging microstructural abnormalities. Using a combination of high‐resolution magnetic resonance imaging, stereology, and quantitative PCR, we studied the pathophysiology of male mice that sustained seven consecutive mild traumatic brain injuries over 9 days in acute (24 hr) and subacute (1 week) time periods. rmCHI induced focal cortical microhemorrhages and impaired axial diffusivity at 1 week postinjury. These microstructural abnormalities were associated with a significant increase in microglia. Notably, microgliosis was accompanied by a change in inflammatory microenvironment defined by robust spatiotemporal alterations in tumor necrosis factor‐α receptor mRNA. Together these data contribute novel insight into the fundamental biological processes associated with repeated mild brain injury concomitant with subacute imaging abnormalities in a clinically relevant animal model of repeated mild TBI. These findings suggest new diagnostic techniques that can be used as biomarkers to guide the use of future protective or reparative interventions.


Developmental Neuroscience | 2015

Preclinical Models of Encephalopathy of Prematurity

Lauren L. Jantzie; Shenandoah Robinson

Encephalopathy of prematurity (EoP) encompasses the central nervous system (CNS) abnormalities associated with injury from preterm birth. Although rapid progress is being made, limited understanding exists of how cellular and molecular CNS injury from early birth manifests as the myriad of neurological deficits in children who are born preterm. More importantly, this lack of direct insight into the pathogenesis of these deficits hinders both our ability to diagnose those infants who are at risk in real time and could potentially benefit from treatment and our ability to develop more effective interventions. Current barriers to clarifying the pathophysiology, developmental trajectory, injury timing, and evolution include preclinical animal models that only partially recapitulate the molecular, cellular, histological, and functional abnormalities observed in the mature CNS following EoP. Inflammation from hypoxic-ischemic and/or infectious injury induced in utero in lower mammals, or actual prenatal delivery of more phylogenetically advanced mammals, are likely to be the most clinically relevant EOP models, facilitating translation to benefit infants. Injury timing, type, severity, and pathophysiology need to be optimized to address the specific hypothesis being tested. Functional assays of the mature animal following perinatal injury to mimic EoP should ideally test for the array of neurological deficits commonly observed in preterm infants, including gait, seizure threshold and cognitive and behavioral abnormalities. Here, we review the merits of various preclinical models, identify gaps in knowledge that warrant further study and consider challenges that animal researchers may face in embarking on these studies. While no one model system is perfect, insights relevant to the clinical problem can be gained with interpretation of experimental results within the context of inherent limitations of the chosen model system. Collectively, optimal use of multiple models will address a major challenge facing the field today - to identify the type and severity of CNS injury these vulnerable infants suffer in a safe and timely manner, such that emerging neurointerventions can be tailored to specifically address individual reparative needs.

Collaboration


Dive into the Lauren L. Jantzie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebekah Mannix

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William P. Meehan

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Frances E. Jensen

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge