Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauren M. Byrne is active.

Publication


Featured researches published by Lauren M. Byrne.


Lancet Neurology | 2017

Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington's disease: a retrospective cohort analysis

Lauren M. Byrne; Filipe B. Rodrigues; Kaj Blennow; Alexandra Durr; Blair R. Leavitt; Raymund A.C. Roos; Rachael I. Scahill; Sarah J. Tabrizi; Henrik Zetterberg; Douglas R. Langbehn; Edward J. Wild

Summary Background Blood biomarkers of neuronal damage could facilitate clinical management of and therapeutic development for Huntingtons disease. We investigated whether neurofilament light protein NfL (also known as NF-L) in blood is a potential prognostic marker of neurodegeneration in patients with Huntingtons disease. Methods We did a retrospective analysis of healthy controls and carriers of CAG expansion mutations in HTT participating in the 3-year international TRACK-HD study. We studied associations between NfL concentrations in plasma and clinical and MRI neuroimaging findings, namely cognitive function, motor function, and brain volume (global and regional). We used random effects models to analyse cross-sectional associations at each study visit and to assess changes from baseline, with and without adjustment for age and CAG repeat count. In an independent London-based cohort of 37 participants (23 HTT mutation carriers and 14 controls), we further assessed whether concentrations of NfL in plasma correlated with those in CSF. Findings Baseline and follow-up plasma samples were available from 97 controls and 201 individuals carrying HTT mutations. Mean concentrations of NfL in plasma at baseline were significantly higher in HTT mutation carriers than in controls (3·63 [SD 0·54] log pg/mL vs 2·68 [0·52] log pg/mL, p<0·0001) and the difference increased from one disease stage to the next. At any given timepoint, NfL concentrations in plasma correlated with clinical and MRI findings. In longitudinal analyses, baseline NfL concentration in plasma also correlated significantly with subsequent decline in cognition (symbol-digit modality test r=–0·374, p<0·0001; Stroop word reading r=–0·248, p=0·0033), total functional capacity (r=–0·289, p=0·0264), and brain atrophy (caudate r=0·178, p=0·0087; whole-brain r=0·602, p<0·0001; grey matter r=0·518, p<0·0001; white matter r=0·588, p<0·0001; and ventricular expansion r=–0·589, p<0·0001). All changes except Stroop word reading and total functional capacity remained significant after adjustment for age and CAG repeat count. In 104 individuals with premanifest Huntingtons disease, NfL concentration in plasma at baseline was associated with subsequent clinical onset during the 3-year follow-up period (hazard ratio 3·29 per log pg/mL, 95% CI 1·48–7·34, p=0·0036). Concentrations of NfL in CSF and plasma were correlated in mutation carriers (r=0·868, p<0·0001). Interpretation NfL in plasma shows promise as a potential prognostic blood biomarker of disease onset and progression in Huntingtons disease. Funding Medical Research Council, GlaxoSmithKline, CHDI Foundation, Swedish Research Council, European Research Council, Wallenberg Foundation, and Wolfson Foundation.


Journal of Huntington's disease | 2016

Cerebrospinal Fluid Biomarkers for Huntington's Disease

Lauren M. Byrne; Edward J. Wild

Cerebrospinal fluid (CSF) is enriched in brain-derived components and represents an accessible and appealing means of interrogating the CNS milieu to study neurodegenerative diseases and identify biomarkers to facilitate the development of novel therapeutics. Many such CSF biomarkers have been proposed for Huntingtons disease (HD) but none has been validated for clinical trial use. Across many studies proposing dozens of biomarker candidates, there is a notable lack of statistical power, consistency, rigor and validation. Here we review proposed CSF biomarkers including neurotransmitters, transglutaminase activity, kynurenine pathway metabolites, oxidative stress markers, inflammatory markers, neuroendocrine markers, protein markers of neuronal death, proteomic approaches and mutant huntingtin protein itself. We reflect on the need for large-scale, standardized CSF collections with detailed phenotypic data to validate and qualify much-needed CSF biomarkers for clinical trial use in HD.


Journal of Neurochemistry | 2016

Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington's disease

Filipe B. Rodrigues; Lauren M. Byrne; Peter McColgan; Nicola J. Robertson; Sarah J. Tabrizi; Blair R. Leavitt; Henrik Zetterberg; Edward J. Wild

Huntingtons disease (HD) is a hereditary neurodegenerative condition with no therapeutic intervention known to alter disease progression, but several trials are ongoing and biomarkers of disease progression are needed. Tau is an axonal protein, often altered in neurodegeneration, and recent studies pointed out its role on HD neuropathology. Our goal was to study whether cerebrospinal fluid (CSF) tau is a biomarker of disease progression in HD. After informed consent, healthy controls, pre‐symptomatic and symptomatic gene expansion carriers were recruited from two HD clinics. All participants underwent assessment with the Unified HD Rating Scale ’99 (UHDRS). CSF was obtained according to a standardized lumbar puncture protocol. CSF tau was quantified using enzyme‐linked immunosorbent assay. Comparisons between two groups were tested using ancova. Pearsons correlation coefficients were calculated for disease progression. Significance level was defined as p < 0.05. Seventy‐six participants were included in this cross‐sectional multicenter international pilot study. Age‐adjusted CSF tau was significantly elevated in gene expansion carriers compared with healthy controls (p = 0.002). UHDRS total functional capacity was significantly correlated with CSF tau (r = −0.29, p = 0.004) after adjustment for age, and UHDRS total motor score was significantly correlated with CSF tau after adjustment for age (r = 0.32, p = 0.002). Several UHDRS cognitive tasks were also significantly correlated with CST total tau after age‐adjustment. This study confirms that CSF tau concentrations in HD gene mutation carriers are increased compared with healthy controls and reports for the first time that CSF tau concentration is associated with phenotypic variability in HD. These conclusions strengthen the case for CSF tau as a biomarker in HD.


PLOS ONE | 2016

Cerebrospinal Fluid Inflammatory Biomarkers Reflect Clinical Severity in Huntington’s Disease

Filipe B. Rodrigues; Lauren M. Byrne; Peter McColgan; Nicola J. Robertson; Sarah J. Tabrizi; Henrik Zetterberg; Edward J. Wild

Introduction Immune system activation is involved in Huntington’s disease (HD) pathogenesis and biomarkers for this process could be relevant to study the disease and characterise the therapeutic response to specific interventions. We aimed to study inflammatory cytokines and microglial markers in the CSF of HD patients. Methods CSF TNF-α, IL-1β, IL-6, IL-8, YKL-40, chitotriosidase, total tau and neurofilament light chain (NFL) from 23 mutation carriers and 14 healthy controls were assayed. Results CSF TNF-α and IL-1β were below the limit of detection. Mutation carriers had higher YKL-40 (p = 0.003), chitotriosidase (p = 0.015) and IL-6 (p = 0.041) than controls. YKL-40 significantly correlated with disease stage (p = 0.007), UHDRS total functional capacity score (r = -0.46, p = 0.016), and UHDRS total motor score (r = 0.59, p = 4.5*10−4) after adjustment for age. Conclusion YKL-40 levels in CSF may, after further study, come to have a role as biomarkers for some aspects of HD. Further investigation is needed to support our exploratory findings.


Journal of Huntington's disease | 2017

Validation of Ultrasensitive Mutant Huntingtin Detection in Human Cerebrospinal Fluid by Single Molecule Counting Immunoassay

Valentina Fodale; Roberto Boggio; Manuel Daldin; Cristina Cariulo; Maria Carolina Spiezia; Lauren M. Byrne; Blair R. Leavitt; Edward J. Wild; Douglas A. MacDonald; Andreas Weiss; Alberto Bresciani

Background: The measurement of disease-relevant biomarkers has become a major component of clinical trial design, but in the absence of rigorous clinical and analytical validation of detection methodology, interpretation of results may be misleading. In Huntington’s disease (HD), measurement of the concentration of mutant huntingtin protein (mHTT) in cerebrospinal fluid (CSF) of patients may serve as both a disease progression biomarker and a pharmacodynamic readout for HTT-lowering therapeutic approaches. We recently published the quantification of mHTT levels in HD patient CSF by a novel ultrasensitive immunoassay-based technology and here analytically validate it for use. Objective: This work aims to analytically and clinically validate our ultrasensitive assay for mHTT measurement in human HD CSF, for application as a pharmacodynamic biomarker of CNS mHTT lowering in clinical trials. Methods: The single molecule counting (SMC) assay is an ultrasensitive bead-based immunoassay where upon specific recognition, dye-labeled antibodies are excited by a confocal laser and emit fluorescent light as a readout. The detection of mHTT by this technology was clinically validated following established Food and Drug Administration and European Medicine Agency guidelines. Results: The SMC assay was demonstrated to be accurate, precise, specific, and reproducible. While no matrix influence was detected, a list of interfering substances was compiled as a guideline for proper collection and storage of patient CSF samples. In addition, a set of recommendations on result interpretation is provided. Conclusions: This SMC assay is a robust and ultrasensitive method for the relative quantification of mHTT in human CSF.


Neurology | 2018

Neurofilament light protein in blood predicts regional atrophy in Huntington disease

Eileanoir Johnson; Lauren M. Byrne; Sarah Gregory; Filipe B. Rodrigues; Kaj Blennow; Alexandra Durr; Blair R. Leavitt; Raymund A.C. Roos; Henrik Zetterberg; Sarah J. Tabrizi; Rachael I. Scahill; Edward J. Wild

Objective Neurofilament light (NfL) protein in blood plasma has been proposed as a prognostic biomarker of neurodegeneration in a number of conditions, including Huntington disease (HD). This study investigates the regional distribution of NfL-associated neural pathology in HD gene expansion carriers. Methods We examined associations between NfL measured in plasma and regionally specific atrophy in cross-sectional (n = 198) and longitudinal (n = 177) data in HD gene expansion carriers from the international multisite TRACK-HD study. Using voxel-based morphometry, we measured associations between baseline NfL levels and both baseline gray matter and white matter volume; and longitudinal change in gray matter and white matter over the subsequent 3 years in HD gene expansion carriers. Results After controlling for demographics, associations between increased NfL levels and reduced brain volume were seen in cortical and subcortical gray matter and within the white matter. After also controlling for known predictors of disease progression (age and CAG repeat length), associations were limited to the caudate and putamen. Longitudinally, NfL predicted subsequent occipital gray matter atrophy and widespread white matter reduction, both before and after correction for other predictors of disease progression. Conclusions These findings highlight the value of NfL as a dynamic marker of brain atrophy and, more generally, provide further evidence of the strong association between plasma NfL level, a candidate blood biomarker, and pathologic neuronal change.


Scientific Reports | 2018

Cerebrospinal fluid neurogranin and TREM2 in Huntington’s disease

Lauren M. Byrne; Filipe B. Rodrigues; Eileanoir Johnson; Enrico De Vita; Kaj Blennow; Rachael I. Scahill; Henrik Zetterberg; Amanda Heslegrave; Edward J. Wild

Biomarkers of Huntington’s disease (HD) in cerebrospinal fluid (CSF) could be of value in elucidating the biology of this genetic neurodegenerative disease, as well as in the development of novel therapeutics. Deranged synaptic and immune function have been reported in HD, and concentrations of the synaptic protein neurogranin and the microglial protein TREM2 are increased in other neurodegenerative diseases. We therefore used ELISAs to quantify neurogranin and TREM2 in CSF samples from HD mutation carriers and controls. CSF neurogranin concentration was not significantly altered in HD compared to controls, nor was it significantly associated with disease burden score, total functional capacity or motor score. An apparent increase in CSF TREM2 in manifest HD was determined to be due to increasing TREM2 with age. After age adjustment, there was no significant alteration of TREM2 in either HD group, nor any association with motor, functional or cognitive score, or brain volume quantified by MRI. Both analyses were well-powered, and sample size calculations indicated that several thousand samples per group would be needed to prove that disease-associated alterations do in fact exist. We conclude that neither neurogranin nor TREM2 is a useful biofluid biomarker for disease processes in Huntington’s disease.


Science Translational Medicine | 2018

Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease

Lauren M. Byrne; Filipe B. Rodrigues; Eileanor B. Johnson; P. A. Wijeratne; Enrico De Vita; Daniel C. Alexander; Giuseppe Palermo; Christian Czech; Scott Schobel; Rachael I. Scahill; Amanda Heslegrave; Henrik Zetterberg; Edward J. Wild

Mutant huntingtin and neurofilament in biofluids may have prognostic potential in Huntington’s disease. Improving Huntington’s disease detection Early detection of Huntington’s disease (HD) could help the development of effective therapeutic strategies to block or delay disease progression. Byrne and colleagues now show that in blood and cerebrospinal fluid, mutant huntingtin (mHTT) and neurofilament light (NfL) protein concentrations correlated with disease severity in HD patients. Computational analysis further showed that alterations in circulating NfL and mHTT concentrations may be among the earliest detectable changes in HD. Thus, the results suggest that analysis of mHTT and NfL concentrations in biofluids might be used in combination with other clinical measures for improving the accuracy and efficiency of early HD detection. Huntington’s disease (HD) is a genetic progressive neurodegenerative disorder, caused by a mutation in the HTT gene, for which there is currently no cure. The identification of sensitive indicators of disease progression and therapeutic outcome could help the development of effective strategies for treating HD. We assessed mutant huntingtin (mHTT) and neurofilament light (NfL) protein concentrations in cerebrospinal fluid (CSF) and blood in parallel with clinical evaluation and magnetic resonance imaging in premanifest and manifest HD mutation carriers. Among HD mutation carriers, NfL concentrations in plasma and CSF correlated with all nonbiofluid measures more closely than did CSF mHTT concentration. Longitudinal analysis over 4 to 8 weeks showed that CSF mHTT, CSF NfL, and plasma NfL concentrations were highly stable within individuals. In our cohort, concentration of CSF mHTT accurately distinguished between controls and HD mutation carriers, whereas NfL concentration, in both CSF and plasma, was able to segregate premanifest from manifest HD. In silico modeling indicated that mHTT and NfL concentrations in biofluids might be among the earliest detectable alterations in HD, and sample size prediction suggested that low participant numbers would be needed to incorporate these measures into clinical trials. These findings provide evidence that biofluid concentrations of mHTT and NfL have potential for early and sensitive detection of alterations in HD and could be integrated into both clinical trials and the clinic.


Archive | 2018

Biofluid Biomarkers in Huntington’s Disease

Filipe B. Rodrigues; Lauren M. Byrne; Edward J. Wild

Huntingtons disease (HD) is a chronic progressive neurodegenerative condition where new markers of disease progression are needed. So far no disease-modifying interventions have been found, and few interventions have been proven to alleviate symptoms. This may be partially explained by the lack of reliable indicators of disease severity, progression, and phenotype.Biofluid biomarkers may bring advantages in addition to clinical measures, such as reliability, reproducibility, price, accuracy, and direct quantification of pathobiological processes at the molecular level; and in addition to empowering clinical trials, they have the potential to generate useful hypotheses for new drug development.In this chapter we review biofluid biomarker reports in HD, emphasizing those we feel are likely to be closest to clinical applicability.


Journal of Neurology, Neurosurgery, and Psychiatry | 2018

E07 Cerebrospinal fluid flow dynamics in huntington’s disease using phase contrast MRI: a pilot cross-sectional study

Filipe B. Rodrigues; Lauren M. Byrne; Enrico De Vita; Eileanoir Johnson; Nicola Z. Hobbs; John S. Thornton; Rachael I. Scahill; Edward J. Wild

Background The dynamics of cerebrospinal fluid (CSF) flow have never been studied in Huntington’s disease (HD), and could have a clinically significant impact on the expected distribution of central nervous system delivered drugs such as huntingtin-lowering therapies. Phase contrast MRI (PCMRI) generates a signal contrast between flowing and stationary nuclei, enabling the characterisation of fluid dynamics in vivo. Objectives The objective of this study was to generate pilot data on CSF flow dynamics in HD using PCMRI, to inform the design of future intrathecal drug trials in HD. Methods We performed a prospective cross-sectional analysis of 10 age- and gender-matched healthy controls and 10 manifest HD gene expansion carriers. All participants underwent extensive clinical evaluation and cardiac-gated PCMRI at the level of the cerebral aqueduct, T1 and T8. CSF velocities and flow measurements were derived using a semi-automated method. The influence of age, gender, CAG repeat-length, serum osmolality, whole-brain volume, and ventricle volume on these measurements were tested using Spearman correlations or Fisher’s exact tests. Group comparisons between healthy controls and manifest carriers were achieved via two-sample Wilcoxon rank-sum tests. All tests were two-sided with a significance level of 0.05, and corrected for multiple comparisons. Results Twenty participants were recruited, and no significant age- and gender-imbalances were found. None of the studied covariables was found to have an effect on the CSF velocities and flow measurements after corrected for multiple comparisons. No apparent differences were found between study groups in regards to CSF velocities and flow measurements. Conclusions Although exploratory, our pilot results add to the view that CSF dynamics are not altered in HD. These results need external validation but offer reassurance that clinically-relevant disease-related alterations in CSF flow, that might justify dose-adjustments of intrathecal drugs, are very unlikely to exist.

Collaboration


Dive into the Lauren M. Byrne's collaboration.

Top Co-Authors

Avatar

Edward J. Wild

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah J. Tabrizi

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Blair R. Leavitt

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kaj Blennow

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Eileanoir Johnson

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Enrico De Vita

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge