Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauren V. Schnabel is active.

Publication


Featured researches published by Lauren V. Schnabel.


Journal of Bone and Joint Surgery, American Volume | 2010

Concentrated Bone Marrow Aspirate Improves Full-thickness Cartilage Repair Compared with Microfracture in the Equine Model

Lisa A. Fortier; Hollis G. Potter; Ellen J. Rickey; Lauren V. Schnabel; Li Foong Foo; Leroy R. Chong; Tracy Stokol; Jon Cheetham; Alan J. Nixon

BACKGROUND The purpose of this study was to compare the outcomes of treatment with bone marrow aspirate concentrate, a simple, one-step, autogenous, and arthroscopically applicable method, with the outcomes of microfracture with regard to the repair of full-thickness cartilage defects in an equine model. METHODS Extensive (15-mm-diameter) full-thickness cartilage defects were created on the lateral trochlear ridge of the femur in twelve horses. Bone marrow was aspirated from the sternum and centrifuged to generate the bone marrow concentrate. The defects were treated with bone marrow concentrate and microfracture or with microfracture alone. Second-look arthroscopy was performed at three months, and the horses were killed at eight months. Repair was assessed with use of macroscopic and histological scoring systems as well as with quantitative magnetic resonance imaging. RESULTS No adverse reactions due to the microfracture or the bone marrow concentrate were observed. At eight months, macroscopic scores (mean and standard error of the mean, 9.4 + or - 1.2 compared with 4.4 + or - 1.2; p = 0.009) and histological scores (11.1 + or - 1.6 compared with 6.4 + or - 1.2; p = 0.02) indicated improvement in the repair tissue in the bone marrow concentrate group compared with that in the microfracture group. All scoring systems and magnetic resonance imaging data indicated that delivery of the bone marrow concentrate resulted in increased fill of the defects and improved integration of repair tissue into surrounding normal cartilage. In addition, there was greater type-II collagen content and improved orientation of the collagen as well as significantly more glycosaminoglycan in the bone marrow concentrate-treated defects than in the microfracture-treated defects. CONCLUSIONS Delivery of bone marrow concentrate can result in healing of acute full-thickness cartilage defects that is superior to that after microfracture alone in an equine model. CLINICAL RELEVANCE Delivery of bone marrow concentrate to cartilage defects has the clinical potential to improve cartilage healing, providing a simple, cost-effective, arthroscopically applicable, and clinically effective approach for cartilage repair.


Journal of Orthopaedic Research | 2009

Mesenchymal stem cells and insulin‐like growth factor‐I gene‐enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons

Lauren V. Schnabel; Maureen E. Lynch; Marjolein C. H. van der Meulen; Amy E. Yeager; Matthew A. Kornatowski; Alan J. Nixon

Tendinitis remains a catastrophic injury among athletes. Mesenchymal stem cells (MSCs) have recently been investigated for use in the treatment of tendinitis. Previous work has demonstrated the value of insulin‐like growth factor‐I (IGF‐I) to stimulate cellular proliferation and tendon fiber deposition in the core lesion of tendinitis. This study examined the effects of MSCs, as well as IGF‐I gene‐enhanced MSCs (AdIGF‐MSCs) on tendon healing in vivo. Collagenase‐induced bilateral tendinitis lesions were created in equine flexor digitorum superficialis tendons (SDFT). Tendons were treated with 10 × 106 MSCs or 10 × 106 AdIGF‐MSCs. Control limbs were injected with 1 mL of phosphate‐buffered saline (PBS). Ultrasound examinations were performed at t = 0, 2, 4, 6, and 8 weeks. Horses were euthanized at 8 weeks and SDFTs were mechanically tested to failure and evaluated for biochemical composition and histologic characteristics. Expression of collagen types I and III, IGF‐I, cartilage oligomeric matrix protein (COMP), matrix metalloproteinase‐3 (MMP‐3), matrix metalloproteinase‐13 (MMP‐13), and aggrecanase‐1 (ADAMTS‐4) were similar in MSC and control tendons. Both MSC and AdIGF‐MSC injection resulted in significantly improved tendon histological scores. These findings indicate a benefit to the use of MSCs and AdIGF‐MSCs for the treatment of tendinitis.


American Journal of Sports Medicine | 2014

Increasing Platelet Concentrations in Leukocyte-Reduced Platelet-Rich Plasma Decrease Collagen Gene Synthesis in Tendons

Stacie G. Boswell; Lauren V. Schnabel; Hussni O. Mohammed; Emily A. Sundman; Tom Minas; Lisa A. Fortier

Background: Platelet-rich plasma (PRP) is used for the treatment of tendinopathy. There are numerous PRP preparations, and the optimal combination of platelets and leukocytes is not known. Hypothesis: Within leukocyte-reduced PRP (lrPRP), there is a plateau effect of platelet concentration, with increasing platelet concentrations being detrimental to extracellular matrix synthesis. Study Design: Controlled laboratory study. Methods: Different formulations of lrPRP with respect to the platelet:leukocyte ratio were generated from venous blood of 8 horses. Explants of the superficial digital flexor tendon were cultured in lrPRP products for 96 hours. Platelet-derived growth factor–BB (PDGF-BB), tumor necrosis factor−α (TNF-α), transforming growth factor–β1 (TGF-β1), and interleukin-1β (IL-1β) concentrations were determined in the media by enzyme-linked immunosorbent assay. Gene expression in tendon tissue for collagen type I and III (COL1A1 and COL3A1, respectively), matrix metalloproteinase−3 and −13 (MMP-3 and MMP-13, respectively), cartilage oligomeric matrix protein (COMP), and IL-1β was determined. Data were divided into 3 groups of lrPRP based on the ratio of platelets:leukocytes and evaluated to determine the effect of platelet concentration. Results: Complete blood counts verified leukocyte reduction and platelet enrichment in all PRP preparations. In the lrPRP preparation, the anabolic growth factors PDGF-BB and TGF-β1 were increased with increasing platelet concentrations, and the catabolic cytokine IL-1β was decreased with increasing platelet concentrations. Increasing the platelet concentration resulted in a significant reduction in COL1A1 and COL3A1 synthesis in tendons. Conclusion: Increasing the platelet concentration within lrPRP preparations results in the delivery of more anabolic growth factors and less proinflammatory cytokines, but the biological effect on tendons is diminished metabolism as indicated by a decrease in the synthesis of both COL1A1 and COL3A1. Together, this information suggests that minimizing leukocytes in PRP is more important than maximizing platelet numbers with respect to decreasing inflammation and enhancing matrix gene synthesis. Clinical Relevance: This study suggests that reducing leukocytes to minimize catabolic signaling appears to be more important than increasing platelets in an effort to maximize anabolic signaling. Further, a maximum biological threshold of benefit was demonstrated with regard to the number of platelets beyond which further increases in platelet concentration did not result in further anabolic upregulation. In vivo investigations documenting the use of platelets for the treatment of tendinopathy are justified as well as further in vitro characterization of the ideal PRP product for the treatment of tendinopathy and other musculoskeletal applications.


Journal of Shoulder and Elbow Surgery | 2012

Cell- and gene-based approaches to tendon regeneration

Alan J. Nixon; Ashlee E. Watts; Lauren V. Schnabel

Repair of rotator cuff tears in experimental models has been significantly improved by the use of enhanced biologic approaches, including platelet-rich plasma, bone marrow aspirate, growth factor supplements, and cell- and gene-modified cell therapy. Despite added complexity, cell-based therapies form an important part of enhanced repair, and combinations of carrier vehicles, growth factors, and implanted cells provide the best opportunity for robust repair. Bone marrow-derived mesenchymal stem cells provide a stimulus for repair in flexor tendons, but application in rotator cuff repair has not shown universally positive results. The use of scaffolds such as platelet-rich plasma, fibrin, and synthetic vehicles and the use of gene priming for stem cell differentiation and local anabolic and anti-inflammatory impact have both provided essential components for enhanced tendon and tendon-to-bone repair in rotator cuff disruption. Application of these research techniques in human rotator cuff injury has generally been limited to autologous platelet-rich plasma, bone marrow concentrate, or bone marrow aspirates combined with scaffold materials. Cultured mesenchymal progenitor therapy and gene-enhanced function have not yet reached clinical trials in humans. Research in several animal species indicates that the concept of gene-primed stem cells, particularly embryonic stem cells, combined with effective culture conditions, transduction with long-term integrating vectors carrying anabolic growth factors, and development of cells conditioned by use of RNA interference gene therapy to resist matrix metalloproteinase degradation, may constitute potential advances in rotator cuff repair. This review summarizes cell- and gene-enhanced cell research for tendon repair and provides future directions for rotator cuff repair using biologic composites.


Annals of the New York Academy of Sciences | 2007

Gene therapy in musculoskeletal repair.

Alan J. Nixon; Laurie R. Goodrich; Michael S. Scimeca; Thomas H. Witte; Lauren V. Schnabel; Ashlee E. Watts; Paul D. Robbins

Abstract:  Local and regional gene therapy has improved healing in preclinical trials of articular and other muculoskeletal conditions. Combinations of cell supplementation and cells overexpressing growth factor genes have shown promising results for improving cartilage repair, enhancing delayed union of fractures, and driving organized tendon repair. Proof of concept has been developed using viral vectors, predominantly adenovirus, to deliver growth factor genes, such as BMP‐2, TGF‐β1, and IGF‐I. Integrating vectors, such as retrovirus and lentivirus, have improved the duration of gene‐induced repair, however, increased risk factors have limited broad application. Cartilage repair can be improved using chondrocyte or stem cell transplantation with cells expressing IGF‐I, BMP‐2, or FGF‐2. In cartilage injury and secondary osteoarthritis models, a combination of IL‐1 knockdown and growth factor supplementation has restored cartilage matrix and stabilized the osteoarthritic process. Ultimately, nonviral vectors may provide similar control of catabolic activity in cartilage and synovial structures, which may further improve outcome after chondrocyte or mesenchymal stem cell (MSC) implantation. MSCs derived from bone marrow, fat, or other connective tissues provide a multipotent cell source that may be privileged vectors for skeletal gene therapy. MSCs expressing BMP‐2, TGF‐β1, LMP‐1, IGF‐I, or GDF‐5 have enhanced cartilage, bone, and tendon repair. Overall, the field of orthopedic gene therapy for enhanced tissue repair has made significant preclinical advances. Combining existing cell transplant technology to deliver differentiated cells in a minimally invasive way, with genes that improve matrix formation, provides a manageable protocol for a persisting anabolic impact.


Stem Cell Research & Therapy | 2014

Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro

Lauren V. Schnabel; Lynn M Pezzanite; Douglas F. Antczak; M. Julia B. Felippe; Lisa A. Fortier

IntroductionThe horse is a valuable species to assess the effect of allogeneic mesenchymal stromal cells (MSCs) in regenerative treatments. No studies to date have examined recipient response to major histocompatibility complex (MHC)-mismatched equine MSCs. The purposes of this study were to immunophenotype MSCs from horses of known MHC haplotype and to compare the immunogenicity of MSCs with differing MHC class II expression.MethodsMSCs and peripheral blood leukocytes (PBLs) were obtained from Thoroughbred horses (n = 10) of known MHC haplotype (ELA-A2, -A3, and -A9 homozygotes). MSCs were cultured through P8; cells from each passage (P2 to P8) were cryopreserved until used. Immunophenotyping of MHC class I and II, CD44, CD29, CD90, LFA-1, and CD45RB was performed by using flow cytometry. Tri-lineage differentiation assays were performed to confirm MSC multipotency. Recombinant equine IFN-γ was used to stimulate MHC class II negative MSCs in culture, after which expression of MHC class II was re-examined. To assess the ability of MHC class II negative or positive MSCs to stimulate an immune response, modified one-way mixed leukocyte reactions (MLRs) were performed by using MHC-matched and mismatched responder PBLs and stimulator PBLs or MSCs. Proliferation of gated CFSE-labeled CD3+ responder T cells was evaluated via CFSE attenuation by using flow cytometry and reported as the number of cells in the proliferating T-cell gate.ResultsMSCs varied widely in MHC class II expression despite being homogenous in terms of “stemness” marker expression and ability to undergo trilineage differentiation. Stimulation of MHC class II negative MSCs with IFN-γ resulted in markedly increased expression of MHC class II. MLR results revealed that MHC-mismatched MHC class II-positive MSCs caused significantly increased responder T-cell proliferation compared with MHC-mismatched MHC class II-negative and MHC-matched MSCs, and equivalent to that of the positive control of MHC-mismatched leukocytes.ConclusionsThe results of this study suggest that MSCs should be confirmed as MHC class II negative before allogeneic application. Additionally, it must be considered that even MHC class II-negative MSCs could upregulate MHC class II expression if implanted into an area of active inflammation, as demonstrated with in vitro stimulation with IFN-γ.


Equine Veterinary Journal | 2008

Effects of platelet rich plasma and acellular bone marrow on gene expression patterns and DNA content of equine suspensory ligament explant cultures

Lauren V. Schnabel; Hussni O. Mohammed; May S. Jacobson; Lisa A. Fortier

REASONS FOR PERFORMING STUDY Suspensory ligament (SL) desmitis is a common source of lameness. The results of this study will determine if blood-derived products stimulate SL matrix synthesis and have potential as regenerative therapies for SL desmitis OBJECTIVES To determine if various blood-based biological products including plasma, blood, PRP, platelet poor plasma (PPP) and ABM aspirate stimulates anabolic and/or catabolic pathways in suspensory ligaments (SL). METHODS The body of the SL was harvested from 6 horses and used to establish explant cultures. Explants were cultured in plasma, blood, PRP, PPP or ABM at concentrations of 10, 50 or 100%. Anabolic responses were assessed by use of quantitative PCR for collagens type I and III, cartilage oligomeric matrix protein (COMP) and decorin. Total DNA and collagen protein content were also measured. Catabolic reactions were measured by quantitative PCR for matrix metalloproteinases 3 and 13 (MMP-3, MMP-13). RESULTS Acellular bone marrow aspirate at 100% stimulated decorin and COMP mRNA synthesis more than all other treatments at all concentrations. No treatment at any concentration stimulated the catabolic gene MMP-13; only 50% ABM stimulated MMP-13 mRNA expression. CONCLUSIONS Acellular bone marrow is indicated, and might be preferred to plasma, blood or PPP, as a blood-based biological source for SL tissue regenerative therapy. Long-term, placebo controlled case studies are indicated to determine if ABM aids in recovery from SL desmitis. POTENTIAL RELEVANCE Bone marrow aspirate is an autogenous, readily available biological source for SL regenerative therapy where the aim is to stimulate matrix synthesis.


Veterinary Journal | 2013

Therapeutic use of stem cells in horses: Which type, how, and when?

Lauren V. Schnabel; Lisa A. Fortier; C. Wayne McIlwraith; Karl M. Nobert

Stem cells are commonly used in equine practice to treat musculoskeletal disorders including tendonitis, osteoarthritis, and more recently laminitis. As the field of regenerative medicine continues to advance, equine practitioners need contemporary information regarding the choice of stem cell type and recommendations regarding clinical implementation of stem cell therapies. Clinicians must also be aware of the limitation in current knowledge regarding stem cells, and the impending regulatory laws that may limit the use of equine stem cells in clinical patients.


Equine Veterinary Journal | 2012

Pharmacokinetics and distribution of minocycline in mature horses after oral administration of multiple doses and comparison with minimum inhibitory concentrations

Lauren V. Schnabel; Mark G. Papich; Thomas J. Divers; Craig Altier; M. S. Aprea; Taralyn M. McCarrel; Lisa A. Fortier

REASONS FOR PERFORMING STUDY Minocycline holds great potential for use in horses not only for its antimicrobial effects but also for its anti-inflammatory and neuroprotective properties. However, there are no pharmacokinetic or safety data available regarding the use of oral minocycline in horses. OBJECTIVES To determine pharmacokinetics, safety and penetration into plasma, synovial fluid, aqueous humour (AH) and cerebral spinal fluid (CSF) of minocycline after oral administration of multiple doses in horses and to determine the minimum inhibitory concentrations (MIC) of minocycline for equine pathogenic bacteria. METHODS Six horses received minocycline (4 mg/kg bwt q. 12 h for 5 doses). Thirty-three blood and 9 synovial fluid samples were collected over 96 h. Aqueous humour and CSF samples were collected 1 h after the final dose. Minocycline concentrations were measured using high pressure liquid chromatography. The MIC values of minocycline for equine bacterial isolates were determined. RESULTS At steady state, the mean ± s.d. peak concentration of minocycline in the plasma was 0.67 ± 0.26 µg/ml and the mean half-life was 11.48 ± 3.23 h. The highest trough synovial fluid minocycline concentration was 0.33 ± 0.12 µg/ml. The AH concentration of minocycline was 0.09 ± 0.03 µg/ml in normal eyes and 0.11 ± 0.04 µg/ml in blood aqueous barrier-disrupted eyes. The mean CSF concentration of minocycline was 0.38 ± 0.09 µg/ml. The MIC values were determined for 301 isolates. Minocycline concentrations were above the MIC(50) and MIC(90) for many gram-positive equine pathogens. POTENTIAL RELEVANCE This study supports the use of orally administered minocycline at a dose of 4 mg/kg bwt every 12 h for the treatment of nonocular infections caused by susceptible (MIC ≤ 0.25 µg/ml) organisms in horses. Further studies are required to determine the dose that would be effective for the treatment of ocular infections.


Stem Cell Research & Therapy | 2012

Genetic background affects induced pluripotent stem cell generation.

Lauren V. Schnabel; Christian Abratte; John C. Schimenti; Teresa L. Southard; Lisa A. Fortier

IntroductionThe influence of genetic background on the ability to generate induced pluripotent stem cells (iPSCs) has the potential to impact future applications, but has yet to be examined in detail. The purpose of this study was to determine if genetic background affects the efficiency of generating iPSCs during early reprograming as well as the pluripotent stability of the iPSCs during later stages of reprograming.MethodsMouse embryonic fibroblasts (MEFs) were isolated from six strains of mice (NON/LtJ; C57BL/6J; DBA/2J; BALB/cJ; 129S1/SvlmJ; CAST/EiJ) that were selected based on genetic diversity and differences in ability to produce embryonic stem cell (ESC) lines. MEFs were reprogramed via doxycycline-inducible lentiviral transduction of murine Oct4, Klf4, Sox2, and c-Myc. Differences in efficiency to generate iPSCs were assessed by comparing the total number of colonies, the percentage of colonies positive for alkaline phosphatase staining and the percentage of cells positive for SSEA1. iPSC colonies were expanded to establish doxycycline-independent cell lines whose pluripotency was then evaluated via ability to form teratomas in NOD.CB17-Prkdcscid /J mice. Proliferation of non-transduced parent MEFs from each strain was also examined over ten days under conditions that simulated reprograming.ResultsNON/LtJ and CAST/EiJ strains were more efficient than other strains in generating iPSCs for all parameters measured and parent MEFs from these strains were more proliferative than those from other strains. Doxycycline-independent iPSC lines were established using standard conditions for all strains except BALB/cJ, which required a higher concentration (5x) of leukemia inhibitory factor (LIF). iPSCs from all strains were capable of producing teratomas in NOD.CB17-Prkdcscid /J mice.ConclusionsThe results of this study suggest that genetic background does affect iPSC generation and pluripotent stability. In addition, our results demonstrate that strain differences in efficiency to generate iPSCs during the early stages of reprograming are correlated with those observed in proliferation of parent MEFs. These findings have important implications both for future iPSC applications as well as for future investigation into determining the genes responsible for reprograming efficiency and stability.

Collaboration


Dive into the Lauren V. Schnabel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alix K. Berglund

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark G. Papich

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge