Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurence A. Soderblom is active.

Publication


Featured researches published by Laurence A. Soderblom.


Science | 1979

The Jupiter System Through the Eyes of Voyager 1

Bradford A. Smith; Laurence A. Soderblom; Torrence V. Johnson; Andrew P. Ingersoll; Stewart A. Collins; Eugene M. Shoemaker; Garry E. Hunt; Harold Masursky; Michael H. Carr; Merton E. Davies; Allan F. Cook; Joseph M. Boyce; G. Edward Danielson; Tobias Owen; Carl Sagan; R. F. Beebe; Joseph Veverka; Robert G. Strom; John F. McCauley; David Morrison; Geoffrey Briggs; V. E. Suomi

The cameras aboard Voyager 1 have provided a closeup view of the Jupiter system, revealing heretofore unknown characteristics and phenomena associated with the planets atmosphere and the surfaces of its five major satellites. On Jupiter itself, atmospheric motions—the interaction of cloud systems—display complex vorticity. On its dark side, lightning and auroras are observed. A ring was discovered surrounding Jupiter. The satellite surfaces display dramatic differences including extensive active volcanismn on Io, complex tectonism on Ganymnede and possibly Europa, and flattened remnants of enormous impact features on Callisto.


Science | 1979

The Galilean Satellites and Jupiter: Voyager 2 Imaging Science Results

Bradford A. Smith; Laurence A. Soderblom; R. F. Beebe; Joseph M. Boyce; Geoffrey Briggs; Michael H. Carr; Stewart A. Collins; Allan F. Cook; G. Edward Danielson; Merton E. Davies; Garry E. Hunt; Andrew P. Ingersoll; Torrence V. Johnson; Harold Masursky; John F. McCauley; David Morrison; Tobias Owen; Carl Sagan; Eugene M. Shoemaker; Robert G. Strom; V. E. Suomi; Joseph Veverka

Voyager 2, during its encounter with the Jupiter system, provided images that both complement and supplement in important ways the Voyager 1 images. While many changes have been observed in Jupiters visual appearance, few, yet significant, changes have been detected in the principal atmospheric currents. Jupiters ring system is strongly forward scattering at visual wavelengths and consists of a narrow annulus of highest particle density, within which is a broader region in which the density is lower. On Io, changes are observed in eruptive activity, plume structure, and surface albedo patterns. Europas surface retains little or no record of intense meteorite bombardment, but does reveal a complex and, as yet, little-understood system of overlapping bright and dark linear features. Ganymede is found to have at least one unit of heavily cratered terrain on a surface that otherwise suggests widespread tectonism. Except for two large ringed basins, Callistos entire surface is heavily cratered.


Science | 1986

Voyager 2 in the Uranian system: imaging science results

Bradford A. Smith; Laurence A. Soderblom; R. F. Beebe; D. Bliss; Joseph M. Boyce; A. Brahic; Geoffrey Briggs; Robert H. Brown; S. A. Collins; Allan F. Cook; Steven K. Croft; Jeffrey N. Cuzzi; G. E. Danielson; Merton E. Davies; T.E. Dowling; David Godfrey; Candice J. Hansen; M. Camille Harris; Garry E. Hunt; A. P. Ingersoll; Torrence V. Johnson; R. J. Krauss; Harold Masursky; David Morrison; Timothy Owen; J. B. Plescia; James B. Pollack; Carolyn C. Porco; Kathy A. Rages; Carl Sagan

Voyager 2 images of the southern hemisphere of Uranus indicate that submicrometersize haze particles and particles of a methane condensation cloud produce faint patterns in the atmosphere. The alignment of the cloud bands is similar to that of bands on Jupiter and Saturn, but the zonal winds are nearly opposite. At mid-latitudes (-70� to -27�), where winds were measured, the atmosphere rotates faster than the magnetic field; however, the rotation rate of the atmosphere decreases toward the equator, so that the two probably corotate at about -20�. Voyager images confirm the extremely low albedo of the ring particles. High phase angle images reveal on the order of 102 new ringlike features of very low optical depth and relatively high dust abundance interspersed within the main rings, as well as a broad, diffuse, low optical depth ring just inside the main rings system. Nine of the newly discovered small satellites (40 to 165 kilometers in diameter) orbit between the rings and Miranda; the tenth is within the ring system. Two of these small objects may gravitationally confine the e ring. Oberon and Umbriel have heavily cratered surfaces resembling the ancient cratered highlands of Earths moon, although Umbriel is almost completely covered with uniform dark material, which perhaps indicates some ongoing process. Titania and Ariel show crater populations different from those on Oberon and Umbriel; these were probably generated by collisions with debris confined to their orbits. Titania and Ariel also show many extensional fault systems; Ariel shows strong evidence for the presence of extrusive material. About halfof Mirandas surface is relatively bland, old, cratered terrain. The remainder comprises three large regions of younger terrain, each rectangular to ovoid in plan, that display complex sets of parallel and intersecting scarps and ridges as well as numerous outcrops of bright and dark materials, perhaps suggesting some exotic composition.


Science | 2010

Diviner lunar radiometer observations of cold traps in the moon's south polar region

David A. Paige; Matthew A. Siegler; Jo Ann Zhang; Paul O. Hayne; Emily J. Foote; Kristen A. Bennett; Ashwin R. Vasavada; Benjamin Todd Greenhagen; John T. Schofield; Daniel J. McCleese; Marc C. Foote; Eric DeJong; Bruce G. Bills; Wayne Hartford; Bruce C. Murray; Carlton C. Allen; Kelly Jean Snook; Laurence A. Soderblom; Simon B. Calcutt; F. W. Taylor; Neil E. Bowles; Joshua L. Bandfield; Richard C. Elphic; Rebecca Rose Ghent; Timothy D. Glotch; Michael Bruce Wyatt; Paul G. Lucey

Watering the Moon About a year ago, a spent upper stage of an Atlas rocket was deliberately crashed into a crater at the south pole of the Moon, ejecting a plume of debris, dust, and vapor. The goal of this event, the Lunar Crater Observation and Sensing Satellite (LCROSS) experiment, was to search for water and other volatiles in the soil of one of the coldest places on the Moon: the permanently shadowed region within the Cabeus crater. Using ultraviolet, visible, and near-infrared spectroscopy data from accompanying craft, Colaprete et al. (p. 463; see the news story by Kerr; see the cover) found evidence for the presence of water and other volatiles within the ejecta cloud. Schultz et al. (p. 468) monitored the different stages of the impact and the resulting plume. Gladstone et al. (p. 472), using an ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO), detected H2, CO, Ca, Hg, and Mg in the impact plume, and Hayne et al. (p. 477) measured the thermal signature of the impact and discovered that it had heated a 30 to 200 square-meter region from ∼40 kelvin to at least 950 kelvin. Paige et al. (p. 479) mapped cryogenic zones predictive of volatile entrapment, and Mitrofanov et al. (p. 483) used LRO instruments to confirm that surface temperatures in the south polar region persist even in sunlight. In all, about 155 kilograms of water vapor was emitted during the impact; meanwhile, the LRO continues to orbit the Moon, sending back a stream of data to help us understand the evolution of its complex surface structures. A controlled spacecraft impact into a crater in the lunar south pole plunged through the lunar soil, revealing water and other volatiles. Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.


Journal of Geophysical Research | 2000

Standardizing the nomenclature of Martian impact crater ejecta morphologies

Nadine G. Barlow; Joseph M. Boyce; Francois Costard; Robert A. Craddock; James B. Garvin; S. E. H. Sakimoto; Ruslan O. Kuzmin; D. J. Roddy; Laurence A. Soderblom

The Mars Crater Morphology Consortium recommends the use of a standardized nomenclature system when discussing Martian impact crater ejecta morphologies. The system utilizes nongenetic descriptors to identify the various ejecta morphologies seen on Mars. This system is designed to facilitate communication and collaboration between researchers. Crater morphology databases will be archived through the U.S. Geological Survey in Flagstaff, where a comprehensive catalog of Martian crater morphologic information will be maintained.


Journal of Geophysical Research | 1997

The Imager for Mars Pathfinder experiment

Peter W. H. Smith; Martin G. Tomasko; Daniel T. Britt; D. G. Crowe; Richard J. Reid; H. U. Keller; Nicolas Thomas; F. Gliem; P. Rueffer; Robert John Sullivan; Ronald Greeley; J. M. Knudsen; M. B. Madsen; H. P. Gunnlaugsson; S. F. Hviid; W. Goetz; Laurence A. Soderblom; Lisa R. Gaddis; R. Kirk

The imager for Mars Pathfinder (IMP), a stereoscopic, multispectral camera, is described in terms of its capabilities for studying the Martian environment. The cameras two eyes, separated by 15.0 cm, provide the camera with range-finding ability. Each eye illuminates half of a single CCD detector with a field of view of 14.4×14.0° and has 12 selectable filters. The ƒ/18 optics have a large depth of field, and no focussing mechanism is required; a mechanical shutter is avoided by using the frame transfer capability of the 512×512 CCD. The resolving power of the camera, 0.98 mrad/pixel, is approximately the same as the Viking Lander cameras; however, the signal-to-noise ratio for IMP greatly exceeds Viking, approaching 350. This feature along with the stable calibration of the filters between 440 and 1000 nm distinguishes IMP from Viking. Specially designed targets are positioned on the Lander; they provide information on the magnetic properties of wind-blown dust, measure the wind vectors, and provide radiometric standard reflectors for calibration. Also, eight low-transmission filters are included for imaging the Sun directly at multiple wavelengths, giving IMP the ability to measure dust opacity and potentially the water vapor content. Several experiments beyond the requisite color panorama are described in detail: contour mapping of the local terrain, multispectral imaging of the surrounding rock and soil to study local mineralogy, viewing of three wind socks, measuring atmospheric opacity and water vapor content, and estimating the magnetic properties of wind-blown dust. This paper is intended to serve as a guide to understanding the scientific integrity of the IMP data that will be returned from Mars starting on July 4, 1997.


Icarus | 1983

Two classes of volcanic plumes on Io

Alfred S. McEwen; Laurence A. Soderblom

Abstract Comparison of Voyager 1 and Voyager 2 images of the south polar region of Io has revealed that a major volcanic eruption occured there during the period between the two spacecraft encounters. An annular deposit ∼1400 km in diameter formed around the Aten Patera caldera (311°W, 48°S), the floor of which changed from orange to red-black. The characteristics of this eruption are remarkably similar to those described earlier for an eruption centered on Surt caldera (338°W, 45°N) that occured during the same period, also at high latitude, but in the north. Both volcanic centers were evidently inactive during the Voyager 1 and 2 encounters but were active sometime between the two. The geometric and colorimetric characteristics, as well as scale of the two annular deposits, are virtually identical; both resemble the surface features formed by the eruption of Pele (255°W, 18°S). These three very large plume eruptions suggest a class of eruption distinct from that of six smaller plumes observed to be continously active by both Voyagers 1 and 2. The smaller plumes, of which Prometheus is the type example, are longer-lived, deposit bright, whitish material, erupt at velocities of ∼0.5 km sec −1 , and are concentrated at low latitudes in an equatorial belt around the satellite. The very large Pele-type plumes, on the other hand, are relatively short-lived, deposit darker red materials, erupt at ∼1.0 km sec −1 , and (rather than restricted to a latitudinal band) are restricted in longitude from 240° to 360°W. Both direct thermal infrared temperature measurements and the implied color temperatures for quenched liquid sulfur suggest that hot spot temperatures of ∼650°K are associated with the large plumes and temperatures 2 in their annuli whereas the large plumes apparently do not. Two other plumes that occur at either end of the linear feature Loki may be intermediate or hybrid between the two classes, exhibiting attributes of both. Additionally, Loki occurs in the area of overlap in the regional distributions of the two plume classes. Two distinct volcanic systems involving different volatiles may be responsible for the two classes. We propose that the discrete temperatures associated with the two classes are a direct reflection of sulfurs peculiar variation in viscosity with temperature. Over two temperature ranges (∼400 to 430°K and >650°K), sulfur is a low-viscosity fluid (orange and black, respectively); at other temperatures it is either solid or has a high viscosity. As a result, there will be two zones in Ios crust in which liquid sulfur will flow freely: a shallow zone of orange sulfur and a deeper zone of black sulfur. A low-temperature system driven by SO 2 heated to 400 to 400°K by the orange sulfur zone seems the best model for the small plumes; a system driven by sulfur heated to >650°K by hot or even molten silicates in the black sulfur zone seems the best explanation for the large plume class. The large Pele-type plumes are apparently concentrated in a region of the satellite in which a thinner sulfur-rich crust overlies the tidally heated silicate lithosphere, so the black sulfur zone may be fairly shallow in this region. The Prometheus-type plumes are possibly confined to the equatorial belt by some process that concentrates SO 2 fluid in the equatorial crust.


Journal of Geophysical Research | 2001

Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io

Ashley Gerard Davies; Laszlo P. Keszthelyi; David A. Williams; Cynthia B. Phillips; Alfred S. McEwen; Rosaly M. C. Lopes; William D. Smythe; L. W. Kamp; Laurence A. Soderblom; Robert W. Carlson

The Galileo spacecraft has been periodically monitoring volcanic activity on Io since June 1996, making it possible to chart the evolution of individual eruptions. We present results of coanalysis of Near-Infrared Mapping Spectrometer (NIMS) and solid-state imaging (SSI) data of eruptions at Pele and Pillan, especially from a particularly illuminating data set consisting of mutually constraining, near-simultaneous NIMS and SSI observations obtained during orbit C9 in June 1997. The observed thermal signature from each hot spot, and the way in which the thermal signature changes with time, tightly constrains the possible styles of eruption. Pele and Pillan have very different eruption styles. From September 1996 through May 1999, Pele demonstrates an almost constant total thermal output, with thermal emission spectra indicative of a long-lived, active lava lake. The NIMS Pillan data exhibit the thermal signature of a “Pillanian” eruption style, a large, vigorous eruption with associated open channel, or sheet flows, producing an extensive flow field by orbit C10 in September 1997. The high mass eruption rate, high liquidus temperature (at least 1870 K) eruption at Pillan is the best candidate so far for an active ultramafic (magnesium-rich, “komatiitic”) flow on Io, a style of eruption never before witnessed. The thermal output per unit area from Pillan is, however, consistent with the emplacement of large, open-channel flows. Magma temperature at Pele is ≥1600 K. If the magma temperature is 1600 K, it suggests a komatiitic-basalt composition. The power output from Pele is indicative of a magma volumetric eruption rate of ∼250 to 340 m3 s−1. Although the Pele lava lake is considerably larger than its terrestrial counterparts, the power and mass fluxes per unit area are similar to active terrestrial lava lakes.


Science | 1991

Impact craters on venus: initial analysis from magellan.

Roger J. Phillips; Raymond E. Arvidson; Joseph M. Boyce; D. B. Campbell; John E. Guest; Gerald G. Schaber; Laurence A. Soderblom

Magellan radar images of 15 percent of the planet show 135 craters of probable impact origin. Craters more than 15 km across tend to contain central peaks, multiple central peaks, and peak rings. Many craters smaller than 15 km exhibit multiple floors or appear in clusters; these phenomena are attributed to atmospheric breakup of incoming meteoroids. Additionally, the atmosphere appears to have prevented the formation of primary impact craters smaller than about 3 km and produced a deficiency in the number of craters smaller than about 25 km across. Ejecta is found at greater distances than that predicted by simple ballistic emplacement, and the distal ends of some ejecta deposits are lobate. These characteristics may represent surface flows of material initially entrained in the atmosphere. Many craters are surrounded by zones of low radar albedo whose origin may have been deformation of the surface by the shock or pressure wave associated with the incoming meteoroid. Craters are absent from several large areas such as a 5 million square kilometer region around Sappho Patera, where the most likely explanation for the dearth of craters is volcanic resurfacing. There is apparently a spectrum of surface ages on Venus ranging approximately from 0 to 800 million years, and therefore Venus must be a geologically active planet.


Science | 1976

Preliminary results from the Viking orbiter imaging experiment

Michael H. Carr; Harold Masursky; William A. Baum; K. R. Blasius; Geoffrey A. Briggs; James A. Cutts; Thomas C. Duxbury; Ronald Greeley; John E. Guest; Bradford A. Smith; Laurence A. Soderblom; Joseph Veverka; John B. Wellman

During its first 30 orbits around Mars, the Viking orbiter took approximately 1000 photographic frames of the surface of Mars with resolutions that ranged from 100 meters to a little more than 1 kilometer. Most were of potential landing sites in Chryse Planitia and Cydonia and near Capri Chasma. Contiguous high-resolution coverage in these areas has led to an increased understanding of surface processes, particularly cratering, fluvial, and mass-wasting phenomena. Most of the surfaces examined appear relatively old, channel features abound, and a variety of features suggestive of permafrost have been identified. The ejecta patterns around large craters imply that fluid flow of ejecta occurred after ballistic deposition. Variable features in the photographed area appear to have changed little since observed 5 years ago from Mariner 9. A variety of atmospheric phenomena were observed, including diffuse morning hazes, both stationary and moving discrete white clouds, and wave clouds covering extensive areas.

Collaboration


Dive into the Laurence A. Soderblom's collaboration.

Top Co-Authors

Avatar

Christophe Sotin

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randolph L. Kirk

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin H. Baines

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert W. Carlson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralph D. Lorenz

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge