Laurence Bayer
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurence Bayer.
Journal of Clinical Investigation | 2010
Vesna Cvetkovic-Lopes; Laurence Bayer; Stéphane Dorsaz; Stéphanie Maret; Sylvain Pradervand; Yves Dauvilliers; Michel Lecendreux; G. J. Lammers; Claire E. H. M. Donjacour; Renaud A. Du Pasquier; Corinne Pfister; Brice Petit; Hyun Hor; Michel Muhlethaler; Mehdi Tafti
Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness and attacks of muscle atonia triggered by strong emotions (cataplexy). Narcolepsy is caused by hypocretin (orexin) deficiency, paralleled by a dramatic loss in hypothalamic hypocretin-producing neurons. It is believed that narcolepsy is an autoimmune disorder, although definitive proof of this, such as the presence of autoantibodies, is still lacking. We engineered a transgenic mouse model to identify peptides enriched within hypocretin-producing neurons that could serve as potential autoimmune targets. Initial analysis indicated that the transcript encoding Tribbles homolog 2 (Trib2), previously identified as an autoantigen in autoimmune uveitis, was enriched in hypocretin neurons in these mice. ELISA analysis showed that sera from narcolepsy patients with cataplexy had higher Trib2-specific antibody titers compared with either normal controls or patients with idiopathic hypersomnia, multiple sclerosis, or other inflammatory neurological disorders. Trib2-specific antibody titers were highest early after narcolepsy onset, sharply decreased within 2-3 years, and then stabilized at levels substantially higher than that of controls for up to 30 years. High Trib2-specific antibody titers correlated with the severity of cataplexy. Serum of a patient showed specific immunoreactivity with over 86% of hypocretin neurons in the mouse hypothalamus. Thus, we have identified reactive autoantibodies in human narcolepsy, providing evidence that narcolepsy is an autoimmune disorder.
European Journal of Neuroscience | 2001
Laurence Bayer; Emmanuel Eggermann; Mauro Serafin; Benoît Saint-Mleux; Danièle Machard; Barbara E. Jones; Michel Muhlethaler
Wakefulness has recently been shown to depend upon the newly identified orexin (or hypocretin) neuropeptides by the findings that alteration in their precursor protein, their receptors or the neurons that produce them leads to the sleep disorder narcolepsy in both animals and humans. The questions of how and where these brain peptides act to maintain wakefulness remain unresolved. The purpose of the present study was to determine whether the orexins could directly affect hypothalamic histaminergic neurons, which are known to contribute to the state of wakefulness by their diffuse projections through the brain. Using brain slices, we recorded in the ventral tuberomammillary nuclei from neurons identified as histaminergic on the basis of their previously described morphological and electrophysiological characteristics and found that they were depolarized and excited by the orexins through a direct postsynaptic action. We then compared the depolarizing effect of orexin A and B and found that they were equally effective upon these cells. This latter finding suggests that the effect of orexins is mediated by orexin type 2 receptors, which are those lacking in narcoleptic dogs. Our results therefore show that the histaminergic neurons of the tuberomammillary nuclei represent an important target for the orexin system in the maintenance of wakefulness.
The Journal of Neuroscience | 2004
Laurence Bayer; Mauro Serafin; Emmanuel Eggermann; Benoît Saint-Mleux; Danièle Machard; Barbara E. Jones; Michel Muhlethaler
The hypocretin-orexin (hcrt-orx) neurons are thought to maintain wakefulness because their loss results in narcolepsy. This role may be fulfilled by the excitatory action that the hcrt-orx peptide exerts on multiple brainstem and forebrain systems that, in turn, promote cortical activation. Here, we examined whether hcrt-orx may also exert a postsynaptic excitatory action at the level of the cortex, where hcrt-orx fibers project. However, we found that neurons in layers 2-5 in the primary somatosensory cortex (SSp) were unresponsive to hcrt-orx. We then found that although all neurons tested in sublayer 6a were also unresponsive to hcrt-oxr, all those tested in sublayer 6b were highly sensitive to the peptide. The sublayer selectivity of hcrt-oxr was not restricted to the somatosensory cortex, because it was also found to be present in the primary visual cortex, the motor cortex, and the cingulate cortex. In the SSp, in which the hcrt-oxr effect was investigated further, it was demonstrated to be postsynaptic, to result from an interaction with Hcrtr2-OX2 receptors and to depend on the closure of a potassium conductance. Similar to the selectivity of action in the thalamus, where hcrt-oxr excites the nonspecific thalamocortical projection neurons and not the specific sensory relay neurons, here in the cortex, it excites a specific subset of cortical neurons which, through corticocortical projections, may also be involved in promoting widespread cortical activation.
Neuroscience | 2005
Laurence Bayer; Emmanuel Eggermann; Mauro Serafin; Jeremy Grivel; Danièle Machard; Michel Muhlethaler; Barbara E. Jones
Hypocretin/orexin (Hcrt/Orx) and melanin concentrating hormone (MCH) are peptides contained in overlapping cell groups of the lateral hypothalamus and commonly involved in regulating sleep-wake states and energy balance, though likely in different ways. To see if these neurons are similarly or differentially modulated by neurotransmitters of the major brainstem arousal systems, the effects of noradrenaline (NA) and carbachol, a cholinergic agonist, were examined on identified Hcrt/Orx and MCH neurons in rat hypothalamic slices. Whereas both agonists depolarized and excited Hcrt/Orx neurons, they both hyperpolarized MCH neurons by direct postsynaptic actions. According to the activity profiles of the noradrenergic locus coeruleus and cholinergic pontomesencephalic neurons across the sleep-waking cycle, the Hcrt/Orx neurons would be excited by NA and acetylcholine (ACh) and thus active during arousal, whereas the MCH neurons would be inhibited by NA and ACh and thus inactive during arousal while disinhibited and possibly active during slow wave sleep. According to the present pharmacological results, Hcrt/Orx neurons may thus stimulate arousal in tandem with other arousal systems, whereas MCH neurons may function in opposition with other arousal systems and thus potentially dampen arousal to promote sleep.
The Journal of Neuroscience | 2004
Benoı̂t Saint-Mleux; Emmanuel Eggermann; Arnaud Bisetti; Laurence Bayer; Danièle Machard; Barbara E. Jones; Michel Muhlethaler; Mauro Serafin
According to multiple lines of evidence, neurons in the ventrolateral preoptic area (VLPO) that contain GABA promote sleep by inhibiting neurons of the arousal systems. Reciprocally, transmitters used by these systems, including acetylcholine (ACh) and noradrenaline (NA), exert an inhibitory action on the VLPO neurons. Because nicotine, an agonist of ACh, acts as a potent stimulant, we queried whether it might participate in the cholinergic inhibition of these sleep-promoting cells. Indeed, we found that ACh inhibits the VLPO neurons through a nicotinic, as well as a muscarinic, action. As evident in the presence of atropine, the non-muscarinic component was mimicked by epibatidine, a nonselective nicotinic ACh receptor (nAChR) agonist and was blocked by dihydro-β-erythroidine, a nonselective nAChR antagonist. It was not, however, blocked by methyllycaconitine, a selective antagonist of the α7 subtype, indicating that the action was mediated by non-α7 nAChRs. The nicotinic inhibition was attributed to a presynaptic facilitation of NA release because it persisted in the presence of tetrodotoxin and was blocked by yohimbine and RS 79948, which are both selective antagonists of α2 adrenergic receptors. Sleep-promoting VLPO neurons are thus dually inhibited by ACh through a muscarinic postsynaptic action and a nicotinic presynaptic action on noradrenergic terminals. Such dual complementary actions allow ACh and nicotine to enhance wakefulness by inhibiting sleep-promoting systems while facilitating other wake-promoting systems.
The Journal of Neuroscience | 2005
Jeremy Grivel; Vesna Cvetkovic; Laurence Bayer; Danièle Machard; Irene Tobler; Michel Muhlethaler; Mauro Serafin
Sleep deprivation is accompanied by the progressive development of an irresistible need to sleep, a phenomenon whose mechanism has remained elusive. Here, we identified for the first time a reflection of that phenomenon in vitro by showing that, after a short 2 h period of total sleep deprivation, the action of noradrenaline on the wake-promoting hypocretin/orexin neurons changes from an excitation to an inhibition. We propose that such a conspicuous modification of responsiveness should contribute to the growing sleepiness that accompanies sleep deprivation.
Current Biology | 2011
Laurence Bayer; Irina Oana Constantinescu; Stephan Perrig; Julie Vienne; Pierre-Paul Vidal; Michel Muhlethaler; Sophie Schwartz
Summary Why do we cradle babies or irresistibly fall asleep in a hammock? Although such simple behaviors are common across cultures and generations, the nature of the link between rocking and sleep is poorly understood [1,2]. Here we aimed to demonstrate that swinging can modulate physiological parameters of human sleep. To this end, we chose to study sleep during an afternoon nap using polysomnography and EEG spectral analyses. We show that lying on a slowly rocking bed (0.25 Hz) facilitates the transition from waking to sleep, and increases the duration of stage N2 sleep. Rocking also induces a sustained boosting of slow oscillations and spindle activity. It is proposed that sensory stimulation associated with a swinging motion exerts a synchronizing action in the brain that reinforces endogenous sleep rhythms. These results thus provide scientific support to the traditional belief that rocking can soothe our sleep.
PLOS ONE | 2010
Vesna Cvetkovic-Lopes; Emmanuel Eggermann; Aaron Uschakov; Jeremy Grivel; Laurence Bayer; Barbara E. Jones; Mauro Serafin; Michel Muhlethaler
In a previous study we proposed that the depolarized state of the wake-promoting hypocretin/orexin (hcrt/orx) neurons was independent of synaptic inputs as it persisted in tetrodotoxin and low calcium/high magnesium solutions. Here we show first that these cells are hyperpolarized when external sodium is lowered, suggesting that non-selective cation channels (NSCCs) could be involved. As canonical transient receptor channels (TRPCs) are known to form NSCCs, we looked for TRPCs subunits using single-cell RT-PCR and found that TRPC6 mRNA was detectable in a small minority, TRPC1, TRPC3 and TRPC7 in a majority and TRPC4 and 5 in the vast majority (∼90%) of hcrt/orx neurons. Using intracellular applications of TRPC antibodies against subunits known to form NSCCs, we then found that only TRPC5 antibodies elicited an outward current, together with hyperpolarization and inhibition of the cells. These effects were blocked by co-application of a TRPC5 antigen peptide. Voltage-clamp ramps in the presence or absence of TRPC5 antibodies indicated the presence of a current with a reversal potential close to −15 mV. Application of the non-selective TRPC channel blocker, flufenamic acid, had a similar effect, which could be occluded in cells pre-loaded with TRPC5 antibodies. Finally, using the same TRPC5 antibodies we found that most hcrt/orx cells show immunostaining for the TRPC5 subunit. These results suggest that hcrt/orx neurons are endowed with a constitutively active non-selective cation current which depends on TRPC channels containing the TRPC5 subunit and which is responsible for the depolarized and active state of these cells.
The Journal of Neuroscience | 2007
Benoı̂t Saint-Mleux; Laurence Bayer; Emmanuel Eggermann; Barbara E. Jones; Michel Muhlethaler; Mauro Serafin
As the major brain circadian pacemaker, the suprachiasmatic nucleus (SCN) is known to influence the timing of sleep and waking. We thus investigated here the effect of SCN stimulation on neurons of the ventrolateral preoptic nucleus (VLPO) thought to be involved in promoting sleep. Using an acute in vitro preparation of the rat anterior hypothalamus/preoptic area, we found that whereas single-pulse stimulations of the SCN evoked standard fast ionotropic IPSPs and EPSPs, train stimulations unexpectedly evoked a long-lasting inhibition (LLI). Such LLIs could also be evoked in VLPO neurons by pressure application of NMDA within the SCN, indicating the specific activation of SCN neurons. This LLI was shown to result from the presynaptic facilitation of noradrenaline release, because it was suppressed in presence of yohimbine, a selective antagonist of α2-adrenoreceptors. The LLI depended on the opening of a potassium conductance, because it was annulled at EK and could be reversed below EK. These results show that the SCN can provide an LLI of the sleep-promoting VLPO neurons that could play a role in the circadian organization of the sleep–waking cycle.
PLOS ONE | 2011
Aaron Uschakov; Jeremy Grivel; Vesna Cvetkovic-Lopes; Laurence Bayer; Laurent Bernheim; Barbara E. Jones; Michel Muhlethaler; Mauro Serafin
We recently demonstrated, in rat brain slices, that the usual excitation by noradrenaline (NA) of hypocretin/orexin (hcrt/orx) neurons was changed to an inhibition following sleep deprivation (SD). Here we describe that in control condition (CC), i.e. following 2 hours of natural sleep in the morning, the α2-adrenergic receptor (α2-AR) agonist, clonidine, had no effect on hcrt/orx neurons, whereas following 2 hours of SD (SDC), it hyperpolarized the neurons by activating G-protein-gated inwardly rectifying potassium (GIRK) channels. Since concentrations of clonidine up to a thousand times (100 µM) higher than those effective in SDC (100 nM), were completely ineffective in CC, a change in the availability of G-proteins is unlikely to explain the difference between the two conditions. To test whether the absence of effect of clonidine in CC could be due to a down-regulation of GIRK channels, we applied baclofen, a GABAB agonist known to also activate GIRK channels, and found that it hyperpolarized hcrt/orx neurons in that condition. Moreover, baclofen occluded the response to clonidine in SDC, indicating that absence of effect of clonidine in CC could not be attributed to down-regulation of GIRK channels. We finally tested whether α2-ARs were still available at the membrane in CC and found that clonidine could reduce calcium currents, indicating that α2-ARs associated with calcium channels remain available in that condition. Taken together, these results suggest that a pool of α2-ARs associated with GIRK channels is normally down-regulated (or desensitized) in hcrt/orx neurons to only become available for their inhibition following sleep deprivation.