Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurence Ehret-Sabatier is active.

Publication


Featured researches published by Laurence Ehret-Sabatier.


Journal of Biological Chemistry | 1996

Characterization of Novel Cysteine-rich Antimicrobial Peptides from Scorpion Blood*

Laurence Ehret-Sabatier; Damarys Loew; Max Goyffon; Pascale Fehlbaum; Jules A. Hoffmann; Alain Van Dorsselaer; Philippe Bulet

We have isolated, from the hemolymph of unchallenged scorpions of the species Androctonus australis, three distinct antimicrobial peptides, which we have fully characterized by Edman degradation, electrospray ionization mass spectrometry, and matrix-assisted laser desorption/ionization mass spectrometry. Two are novel molecules: (i) androctonin, a 25-residue peptide with two disulfide bridges, active against both bacteria (Gram-positive and Gram-negative) and fungi and showing marked sequence homology to tachyplesins and polyphemusins from horseshoe crabs; and (ii) buthinin, a 34-residue antibacterial (Gram-positive and Gram-negative) peptide with three disulfide bridges. The third peptide contains 37 residues and three disulfide bridges and clearly belongs to the family of anti-Gram-positive insect defensins. We have synthesized androctonin and explored its activity spectrum and mode of action.


Molecular & Cellular Proteomics | 2004

Proteomic Analysis of the Systemic Immune Response of Drosophila

Francine Levy; Philippe Bulet; Laurence Ehret-Sabatier

Improvements in two-dimensional gel electrophoresis, mass spectrometry, and bioinformatics provide new tools to characterize proteins involved in a physiological process, such as the immune response of the insect model Drosophila melanogaster. Profiling of the proteins present in the hemolymph (insect blood) of noninfected flies versus flies infected with bacteria or fungi was performed by two-dimensional gel electrophoresis, silver or Coomassie staining, and image analysis. Through this differential analysis, more than 70 out of 160 spots were up- or down-regulated by at least 5-fold after microbial infection. Coomassie staining, in-gel digestion, and database searches yielded the identity of a series of proteins that are directly involved in the Drosophila immune system. This included proteases, protease inhibitors, and recognition molecules such as prophenoloxydase-activating enzymes, serpins, and Gram-negative binding protein-like. Proteins with a potential function in the immune response were also identified, such as an odorant binding protein, peptidylglycine α-hydroxylating monooxygenase, and transferrin, affording new candidates for further investigation of innate immune mechanisms. Moreover, several molecules resulting from the cleavage of proteins were detected after the fungal infection. Altogether, this first differential proteomic analysis of the immune response of Drosophila paves the way for the study of proteins affected during innate immunity.


Insect Biochemistry and Molecular Biology | 2002

Immunopeptides in the defense reactions of Glossina morsitans to bacterial and Trypanosoma brucei brucei infections.

Nathalie Boulanger; Reto Brun; Laurence Ehret-Sabatier; C Kunz; Philippe Bulet

Several dipteran insects are vectors of parasites causing major human infectious diseases. Among these, the tsetse fly, Glossina spp., is responsible for the transmission of trypanosomes, the pathogens responsible for sleeping sickness in Africa. A better understanding of insect-parasite interactions will help establish new strategies to fight this important often fatal disease. Antimicrobial peptides (AMPs) are part of the humoral immune response in insects during bacterial, fungal and parasitic infections. Here, we studied the immune response of Glossina morsitans to bacteria and to Trypanosoma brucei brucei by analyzing the synthesis of AMPs as markers of the humoral immune response. By reversed-phase chromatography, mass spectrometry analysis, Edman degradation and in vitro antimicrobial assays of the hemolymph of immune-challenged adults of G. morsitans, we identified three AMPs: a cecropin, an attacin and a defensin. These three AMPs were found to be induced upon systemic bacterial infection and also after per os infections by bacteria and parasites.


Insect Biochemistry and Molecular Biology | 2001

Immune response of Drosophila melanogaster to infection with the flagellate parasite Crithidia spp.

Nathalie Boulanger; Laurence Ehret-Sabatier; Reto Brun; Daniel Zachary; Philippe Bulet; Jean-Luc Imler

Insects are able to recognize invading microorganisms and to mount an immune response to bacterial and fungal infections. Recently, the fruitfly Drosophila melanogaster has emerged as a promising invertebrate model to investigate innate immunity because of its well-characterized genetics. Insects are also vectors of numerous parasites which can trigger an immune response. We have investigated the interaction of Drosophila melanogaster with the flagellate protozoan Crithidia spp. We show that a per os parasitic infection triggers the synthesis of several antimicrobial peptides. By reverse phase HPLC and mass spectrometry, peptides were shown to be present in the hemolymph and not in the gut tissue, suggesting the presence of immune messengers between the site of the infection, namely the gut, and the fat body, the main site of synthesis for antimicrobial peptides. Interestingly, we have identified one molecule which is specifically induced in the hemolymph after infection with Crithidia, but not with bacteria, suggesting that Drosophila can discriminate between pathogens. When flagellates were injected into the hemolymph, a low synthesis of antimicrobial peptides was observed together with phagocytosis of parasites by circulating hemocytes. The data presented here suggest that Drosophila-Crithidia spp. represents an interesting model to study host defense against protozoan parasites.


Organic and Biomolecular Chemistry | 2006

Design and activity of cationic fullerene derivatives as inhibitors of acetylcholinesterase.

Giorgia Pastorin; Silvia Marchesan; Johan Hoebeke; Tatiana Da Ros; Laurence Ehret-Sabatier; Jean-Paul Briand; Maurizio Prato; Alberto Bianco

Four different regioisomers of cationic bis-N,N-dimethylfulleropyrrolidinium salts have been prepared and evaluated as inhibitors of the enzymatic activity of acetylcholinesterase. These fullerene-based derivatives were found to be noncompetitive inhibitors of acetylthiocholine hydrolysis. Molecular modelling was used to describe the possible interactions between the fullerene cage and the amino acids surrounding the cavity of the enzyme. The cationic C(60) derivatives used in this study represent a new class of molecules potentially able to modulate the enzymatic activity of acetylcholinesterase.


Molecular Microbiology | 2005

Plasmodium berghei ookinetes bind to Anopheles gambiae and Drosophila melanogaster annexins

Michalis Kotsyfakis; Laurence Ehret-Sabatier; Inga Siden-Kiamos; Jaqueline Mendoza; Robert E. Sinden; Christos Louis

Using a proteomic approach we identified polypeptides from Anopheles gambiae and Drosophila melanogaster protein extracts that selectively bind purified Plasmodium berghei ookinetes in vitro; these were two and three distinct polypeptides, respectively, with an apparent molecular weight of about 36 kDa. Combining two‐dimensional electrophoresis and MALDI‐TOF (matrix‐associated laser desorption ionization time of flight) mass spectrometry we determined that the polypeptides correspond to isomorphs of the annexin B11 protein of the fruit fly. When protein extracts derived from A. gambiae and D. melanogaster tissue culture cells were further fractionated, the binding activity matching the annexin protein could be localized in the fraction derived from cell membranes in both diptera. Antibody staining showed that annexin also binds to ookinetes during the invasion of the mosquito midgut. Finally, inclusion of antiannexin antisera in a mosquito blood meal impaired parasite development, suggesting a facilitating role for annexins in the infection of the mosquito by Plasmodium.


Studies in natural products chemistry | 2008

Bioactive Natural Peptides

Sirlei Daffre; Philippe Bulet; Alberto Spisni; Laurence Ehret-Sabatier; Elaine G. Rodrigues; Luiz R. Travassos

Abstract Bioactive natural peptides are ubiquitous in all life kingdoms. They are often characterized by short amino acid sequences and they are found either free or encrypted in proteins thus requiring enzymatic hydrolysis for their release. Matrix-assisted laser desorption/ionization (MALDI) MS and electrospray ionization (ESI) MS techniques have been used for peptide identification and determination of post-translational modifications, directly from body fluids, organs, tissue samples or single-cells. Peptide structures have also been studied by CD and NMR spectroscopy. Antimicrobial peptides (AMPs) synthesized by microorganisms and multicellular organisms can have linear, cyclic or open-ended cyclic structures with one or more disulfide bridges. They exhibit α-helical conformations, amphipathic β-hairpin-like β-sheet, β-sheet and α-helix/β-sheet mixed folds. Some of them, in addition to containing hydrophobic amino acid residues, are rich in proline, histidine, arginine or lysine. AMPs exhibit two main modes of action, one involving an intracellular target, and another the interaction with the cytoplasmic membrane from microorganisms. Membrane-active peptides that include hormones, signal sequences and lytic agents, interact electrostatically with the cellular external membrane and eventually partition into the hydrophobic lipid bilayer where they express their activity. Counterparts of several human endogenous peptides of pharmacological and immunobiological importance are found also in other animal species and they have become the lead for development of new drugs. An increasing number of them display direct or immune-stimulated antitumor activities. Multifunctional peptides have also been recognized in food sources. Owing to the wide reactivity of endogenous peptides generated in cells, appropriate oligopeptide restricted peptidases either give rise to bioactive shorter peptides or contribute to the complete degradation of oligopeptides.


Fundamental & Clinical Pharmacology | 2009

Interactions between ingested kaolinite and the intestinal mucosa in rat : proteomic and cellular evidences

François Reichardt; Caroline Habold; Bertrand Chaumande; Alain Ackermann; Laurence Ehret-Sabatier; Yvon Le Maho; Fabielle Angel; Nicole Liewig; Jean-Hervé Lignot

Although some of the effects of clay ingestion by humans and animals, such as gastrointestinal wellness and the increase in food efficiency are well known, the underlying mechanisms are not yet fully understood. Therefore, the interactions between the intestinal mucosa and kaolinite particles and their effects on mucosal morphology were observed using light microscopy (LM), transmission electron microscopy (TEM), conventional (CSEM) and environmental (ESEM) scanning electron microscopy combined with an EDX micro‐analysis system. Kaolinite consumption, given with free access to rats, varied considerably from one animal to the other but was regular through time for each individual. Some kaolinite particles appeared chemically dissociated in the lumen and within the mucus barrier. Aluminium (Al) originating from ingested clay and present in the mucus layer could directly cross the intestinal mucosa. A significant increase in the thickness of the villi with large vacuoles at the base of the mucosal cells and a decrease in the length of enterocyte microvilli characterized complemented animals. The proteomic analyses of the intestinal mucosa of complemented rats also revealed several modifications in the expression level of cytoskeleton proteins. In summary, kaolinite particles ingested as food complement interact with the intestinal mucosa and modify nutrient absorption. However, these data, together with the potential neurotoxicity of Al, need further investigation.


PLOS ONE | 2015

Heterogeneity of Borrelia burgdorferi Sensu Stricto Population and Its Involvement in Borrelia Pathogenicity: Study on Murine Model with Specific Emphasis on the Skin Interface

Aurélie Kern; Gilles Schnell; Quentin Bernard; Amandine Bœuf; Benoît Jaulhac; Elody Collin; Cathy Barthel; Laurence Ehret-Sabatier; Nathalie Boulanger

Lyme disease is a multisystemic disorder caused by B. burgdorferi sl. The molecular basis for specific organ involvement is poorly understood. The skin plays a central role in the development of Lyme disease as the entry site of B. burgdorferi in which specific clones are selected before dissemination. We compared the skin inflammatory response (antimicrobial peptides, cytokines and chemokines) elicited by spirochete populations recovered from patients presenting different clinical manifestations. Remarkably, these spirochete populations induced different inflammatory profiles in the skin of C3H/HeN mice. As spirochete population transmitted into the host skin is heterogeneous, we isolated one bacterial clone from a population recovered from a patient with neuroborreliosis and compared its virulence to the parental population. This clone elicited a strong cutaneous inflammatory response characterized by MCP-1, IL-6 and antimicrobial peptides induction. Mass spectrometry of this clone revealed 110 overexpressed proteins when compared with the parental population. We further focused on the expression of nine bacterial surface proteins. bb0347 coding for a protein that interacts with host fibronectin, allowing bacterial adhesion to vascular endothelium and extracellular matrix, was found to be induced in host skin with another gene bb0213 coding for a hypothetical protein. These findings demonstrate the heterogeneity of the B. burgdorferi ss population and the complexity of the interaction involved early in the skin.


Molecular & Cellular Proteomics | 2015

Discovery and Targeted Proteomics on Cutaneous Biopsies Infected by Borrelia to Investigate Lyme Disease

Gilles Schnell; Amandine Boeuf; Benoît Westermann; Benoît Jaulhac; Dan Lipsker; Christine Carapito; Nathalie Boulanger; Laurence Ehret-Sabatier

Lyme disease is the most important vector-borne disease in the Northern hemisphere and represents a major public health challenge with insufficient means of reliable diagnosis. Skin is rarely investigated in proteomics but constitutes in the case of Lyme disease the key interface where the pathogens can enter, persist, and multiply. Therefore, we investigated proteomics on skin samples to detect Borrelia proteins directly in cutaneous biopsies in a robust and specific way. We first set up a discovery gel prefractionation-LC-MS/MS approach on a murine model infected by Borrelia burgdorferi sensu stricto that allowed the identification of 25 Borrelia proteins among more than 1300 mouse proteins. Then we developed a targeted gel prefractionation-LC-selected reaction monitoring (SRM) assay to detect 9/33 Borrelia proteins/peptides in mouse skin tissue samples using heavy labeled synthetic peptides. We successfully transferred this assay from the mouse model to human skin biopsies (naturally infected by Borrelia), and we were able to detect two Borrelia proteins: OspC and flagellin. Considering the extreme variability of OspC, we developed an extended SRM assay to target a large set of variants. This assay afforded the detection of nine peptides belonging to either OspC or flagellin in human skin biopsies. We further shortened the sample preparation and showed that Borrelia is detectable in mouse and human skin biopsies by directly using a liquid digestion followed by LC-SRM analysis without any prefractionation. This study thus shows that a targeted SRM approach is a promising tool for the early direct diagnosis of Lyme disease with high sensitivity (<10 fmol of OspC/mg of human skin biopsy).

Collaboration


Dive into the Laurence Ehret-Sabatier's collaboration.

Top Co-Authors

Avatar

Maurice Goeldner

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Philippe Bulet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilles Schnell

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabielle Angel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Amandine Boeuf

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cathy Barthel

University of Strasbourg

View shared research outputs
Researchain Logo
Decentralizing Knowledge