Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurence Lejay is active.

Publication


Featured researches published by Laurence Lejay.


The Plant Cell | 1999

Three Functional Transporters for Constitutive, Diurnally Regulated, and Starvation-Induced Uptake of Ammonium into Arabidopsis Roots

Sonia Gazzarrini; Laurence Lejay; Alain Gojon; Olaf Ninnemann; Wolf B. Frommer; Nicolaus von Wirén

Ammonium and nitrate are the prevalent nitrogen sources for growth and development of higher plants. 15N-uptake studies demonstrated that ammonium is preferred up to 20-fold over nitrate by Arabidopsis plants. To study the regulation and complex kinetics of ammonium uptake, we isolated two new ammonium transporter (AMT) genes and showed that they functionally complemented an ammonium uptake–deficient yeast mutant. Uptake studies with 14C-methylammonium and inhibition by ammonium yielded distinct substrate affinities between ≤0.5 and 40 μM. Correlation of gene expression with 15NH4+ uptake into plant roots showed that nitrogen supply and time of day differentially regulated the individual carriers. Transcript levels of AtAMT1;1, which possesses an affinity in the nanomolar range, steeply increased with ammonium uptake in roots when nitrogen nutrition became limiting, whereas those of AtAMT1;3 increased slightly, with AtAMT1;2 being more constitutively expressed. All three ammonium transporters showed diurnal variation in expression, but AtAMT1;3 transcript levels peaked with ammonium uptake at the end of the light period, suggesting that AtAMT1;3 provides a link between nitrogen assimilation and carbon provision in roots. Our results show that high-affinity ammonium uptake in roots is regulated in relation to the physiological status of the plant at the transcriptional level and by substrate affinities of individual members of the AMT1 gene family.


Genome Biology | 2007

Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis

Rodrigo A. Gutiérrez; Laurence Lejay; Alexis Dean; Francesca Chiaromonte; Dennis E. Shasha; Gloria M. Coruzzi

BackgroundCarbon (C) and nitrogen (N) metabolites can regulate gene expression in Arabidopsis thaliana. Here, we use multinetwork analysis of microarray data to identify molecular networks regulated by C and N in the Arabidopsis root system.ResultsWe used the Arabidopsis whole genome Affymetrix gene chip to explore global gene expression responses in plants exposed transiently to a matrix of C and N treatments. We used ANOVA analysis to define quantitative models of regulation for all detected genes. Our results suggest that about half of the Arabidopsis transcriptome is regulated by C, N or CN interactions. We found ample evidence for interactions between C and N that include genes involved in metabolic pathways, protein degradation and auxin signaling. To provide a global, yet detailed, view of how the cell molecular network is adjusted in response to the CN treatments, we constructed a qualitative multinetwork model of the Arabidopsis metabolic and regulatory molecular network, including 6,176 genes, 1,459 metabolites and 230,900 interactions among them. We integrated the quantitative models of CN gene regulation with the wiring diagram in the multinetwork, and identified specific interacting genes in biological modules that respond to C, N or CN treatments.ConclusionOur results indicate that CN regulation occurs at multiple levels, including potential post-transcriptional control by microRNAs. The network analysis of our systematic dataset of CN treatments indicates that CN sensing is a mechanism that coordinates the global and coordinated regulation of specific sets of molecular machines in the plant cell.


The Plant Cell | 2003

Regulation of Root Ion Transporters by Photosynthesis: Functional Importance and Relation with Hexokinase

Laurence Lejay; Xavier Gansel; Miguel Cerezo; Pascal Tillard; Cathrin Müller; Anne Krapp; Nicolaus von Wirén; Françoise Daniel-Vedele; Alain Gojon

Coordination between the activity of ion transport systems in the root and photosynthesis in the shoot is a main feature of the integration of ion uptake in the whole plant. However, the mechanisms that ensure this coordination are largely unknown at the molecular level. Here, we show that the expression of five genes that encode root NO3−, NH4+, and SO42− transporters in Arabidopsis is regulated diurnally and stimulated by sugar supply. We also provide evidence that one Pi and one K+ transporter also are sugar inducible. Sucrose, glucose, and fructose are able to induce expression of the ion transporter genes but not of the carboxylic acids malate and 2-oxoglutarate. For most genes investigated, induction by light and induction by sucrose are strongly correlated, indicating that they reflect the same regulatory mechanism (i.e., stimulation by photosynthates). The functional importance of this control is highlighted by the phenotype of the atnrt2 mutant of Arabidopsis. In this mutant, the deletion of the sugar-inducible NO3− transporter gene AtNrt2.1 is associated with the loss of the regulation of high-affinity root NO3− influx by light and sugar. None of the sugar analogs used (3-O-methylglucose, 2-deoxyglucose, and mannose) is able to mimic the inducing effect of sugars. In addition, none of the sugar-sensing mutants investigated (rsr1-1, sun6, and gin1-1) is altered in the regulation of AtNrt2.1 expression. These results indicate that the induction of AtNrt2.1 expression by sugars is unrelated to the main signaling mechanisms documented for sugar sensing in plants, such as regulation by sucrose, hexose transport, and hexokinase (HXK) sensing activity. However, the stimulation of AtNrt2.1 transcript accumulation by sucrose and glucose is abolished in an antisense AtHXK1 line, suggesting that HXK catalytic activity and carbon metabolism downstream of the HXK step are crucial for the sugar regulation of AtNrt2.1 expression.


The Plant Cell | 2004

Transcript Profiling in the chl1-5 Mutant of Arabidopsis Reveals a Role of the Nitrate Transporter NRT1.1 in the Regulation of Another Nitrate Transporter, NRT2.1

Stéphane Muños; Céline Cazettes; Cécile Fizames; Frédéric Gaymard; Pascal Tillard; Marc Lepetit; Laurence Lejay; Alain Gojon

Arabidopsis thaliana mutants deficient for the NRT1.1 NO3− transporter display complex phenotypes, including lowered NO3− uptake, altered development of nascent organs, and reduced stomatal opening. To obtain further insight at the molecular level on the multiple physiological functions of NRT1.1, we performed large-scale transcript profiling by serial analysis of gene expression in the roots of the chl1-5 deletion mutant of NRT1.1 and of the Columbia wild type. Several hundred genes were differentially expressed between the two genotypes, when plants were grown on NH4NO3 as N source. Among these genes, the N satiety-repressed NRT2.1 gene, encoding a major component of the root high-affinity NO3− transport system (HATS), was found to be strongly derepressed in the chl1-5 mutant (as well as in other NRT1.1 mutants). This was associated with a marked stimulation of the NO3− HATS activity in the mutant, suggesting adaptive response to a possible N limitation resulting from NRT1.1 mutation. However, derepression of NRT2.1 in NH4NO3-fed chl1-5 plants could not be attributed to lowered production of N metabolites. Rather, the results show that normal regulation of NRT2.1 expression is strongly altered in the chl1-5 mutant, where this gene is no more repressible by high N provision to the plant. This indicates that NRT1.1 plays an unexpected but important role in the regulation of both NRT2.1 expression and NO3− HATS activity. Overexpression of NRT2.1 was also found in wild-type plants supplied with 1 mM NH4+ plus 0.1 mM NO3−, a situation where NRT1.1 is likely to mediate very low NO3− transport. Thus, we suggest that it is the lack of NRT1.1 activity, rather than the absence of this transporter, that derepresses NRT2.1 expression in the presence of NH4+. Two hypotheses are discussed to explain these results: (1) NRT2.1 is upregulated by a NO3− demand signaling, indirectly triggered by lack of NRT1.1-mediated uptake, which overrides feedback repression by N metabolites, and (2) NRT1.1 plays a more direct signaling role, and its transport activity generates an unknown signal required for NRT2.1 repression by N metabolites. Both mechanisms would warrant that either NRT1.1 or NRT2.1 ensure significant NO3− uptake in the presence of NH4+ in the external medium, which is crucial to prevent the detrimental effects of pure NH4+ nutrition.


Genome Biology | 2004

Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants

Peter Palenchar; Andrei Kouranov; Laurence Lejay; Gloria M. Coruzzi

BackgroundCarbon and nitrogen are two signals that influence plant growth and development. It is known that carbon- and nitrogen-signaling pathways influence one another to affect gene expression, but little is known about which genes are regulated by interactions between carbon and nitrogen signaling or the mechanisms by which the different pathways interact.ResultsMicroarray analysis was used to study global changes in mRNA levels due to carbon and nitrogen in Arabidopsis thaliana. An informatic analysis using InterAct Class enabled us to classify genes on the basis of their responses to carbon or nitrogen treatments. This analysis provides in vivo evidence supporting the hypothesis that plants have a carbon/nitrogen (CN)-sensing/regulatory mechanism, as we have identified over 300 genes whose response to combined CN treatment is different from that expected from expression values due to carbon and nitrogen treatments separately. Metabolism, energy and protein synthesis were found to be significantly affected by interactions between carbon and nitrogen signaling. Identified putative cis-acting regulatory elements involved in mediating CN-responsive gene expression suggest multiple mechanisms for CN responsiveness. One mechanism invokes the existence of a single CN-responsive cis element, while another invokes the existence of cis elements that promote nitrogen-responsive gene expression only when present in combination with a carbon-responsive cis element.ConclusionThis study has allowed us to identify genes and processes regulated by interactions between carbon and nitrogen signaling and take a first step in uncovering how carbon- and nitrogen-signaling pathways interact to regulate transcription.


Journal of Biological Chemistry | 2007

Regulation of Root Nitrate Uptake at the NRT2.1 Protein Level in Arabidopsis thaliana

Judith Wirth; Franck Chopin; Véronique Santoni; Gaëlle Viennois; Pascal Tillard; Anne Krapp; Laurence Lejay; Françoise Daniel-Vedele; Alain Gojon

In Arabidopsis the NRT2.1 gene encodes a main component of the root high-affinity nitrate uptake system (HATS). Its regulation has been thoroughly studied showing a strong correlation between NRT2.1 expression and HATS activity. Despite its central role in plant nutrition, nothing is known concerning localization and regulation of NRT2.1 at the protein level. By combining a green fluorescent protein fusion strategy and an immunological approach, we show that NRT2.1 is mainly localized in the plasma membrane of root cortical and epidermal cells, and that several forms of the protein seems to co-exist in cell membranes (the monomer and at least one higher molecular weight complex). The monomer is the most abundant form of NRT2.1, and seems to be the one involved in \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} transport. It strictly requires the NAR2.1 protein to be expressed and addressed at the plasma membrane. No rapid changes in NRT2.1 abundance were observed in response to light, sucrose, or nitrogen treatments that strongly affect both NRT2.1 mRNA level and HATS activity. This suggests the occurrence of post-translational regulatory mechanisms. One such mechanism could correspond to the cleavage of NRT2.1 C terminus, which results in the presence of both intact and truncated proteins in the plasma membrane.


Plant Physiology | 2008

Oxidative Pentose Phosphate Pathway-Dependent Sugar Sensing as a Mechanism for Regulation of Root Ion Transporters by Photosynthesis

Laurence Lejay; Judith Wirth; Marjorie Pervent; Joanna Marie-France Cross; Pascal Tillard; Alain Gojon

Root ion transport systems are regulated by light and/or sugars, but the signaling mechanisms are unknown. We showed previously that induction of the NRT2.1 NO3− transporter gene by sugars was dependent on carbon metabolism downstream hexokinase (HXK) in glycolysis. To gain further insights on this signaling pathway and to explore more systematically the mechanisms coordinating root nutrient uptake with photosynthesis, we studied the regulation of 19 light-/sugar-induced ion transporter genes. A combination of sugar, sugar analogs, light, and CO2 treatments provided evidence that these genes are not regulated by a common mechanism and unraveled at least four different signaling pathways involved: regulation by light per se, by HXK-dependent sugar sensing, and by sugar sensing upstream or downstream HXK, respectively. More specific investigation of sugar-sensing downstream HXK, using NRT2.1 and NRT1.1 NO3− transporter genes as models, highlighted a correlation between expression of these genes and the concentration of glucose-6-P in the roots. Furthermore, the phosphogluconate dehydrogenase inhibitor 6-aminonicotinamide almost completely prevented induction of NRT2.1 and NRT1.1 by sucrose, indicating that glucose-6-P metabolization within the oxidative pentose phosphate pathway is required for generating the sugar signal. Out of the 19 genes investigated, most of those belonging to the NO3−, NH4+, and SO42− transporter families were regulated like NRT2.1 and NRT1.1. These data suggest that a yet-unidentified oxidative pentose phosphate pathway-dependent sugar-sensing pathway governs the regulation of root nitrogen and sulfur acquisition by the carbon status of the plant to coordinate the availability of these three elements for amino acid synthesis.


Plant Physiology | 2003

Light- and carbon-signaling pathways. modeling circuits of interactions

Karen E. Thum; Dennis E. Shasha; Laurence Lejay; Gloria M. Coruzzi

Here, we report the systematic exploration and modeling of interactions between light and sugar signaling. The data set analyzed explores the interactions of sugar (sucrose) with distinct light qualities (white, blue, red, and far-red) used at different fluence rates (low or high) in etiolated seedlings and mature green plants. Boolean logic was used to model the effect of these carbon/light interactions on three target genes involved in nitrogen assimilation: asparagine synthetase (ASN1 and ASN2) and glutamine synthetase (GLN2). This analysis enabled us to assess the effects of carbon on light-induced genes (GLN2/ASN2) versus light-repressed genes (ASN1) in this pathway. New interactions between carbon and blue-light signaling were discovered, and further connections between red/far-red light and carbon were modeled. Overall, light was able to override carbon as a major regulator of ASN1 and GLN2 in etiolated seedlings. By contrast, carbon overrides light as the major regulator of GLN2 and ASN2 in light-grown plants. Specific examples include the following: Carbon attenuated the blue-light induction of GLN2 in etiolated seedlings and also attenuated the white-, blue-, and red-light induction of GLN2 and ASN2 in light-grown plants. By contrast, carbon potentiated far-red-light induction of GLN2 and ASN2 in light-grown plants. Depending on the fluence rate of far-red light, carbon either attenuated or potentiated light repression of ASN1 in light-grown plants. These studies indicate the interaction of carbon with blue, red, and far-red-light signaling and set the stage for further investigation into modeling this complex web of interacting pathways using systems biology approaches.


Plant Physiology | 2012

Regulation of High-Affinity Nitrate Uptake in Roots of Arabidopsis Depends Predominantly on Posttranscriptional Control of the NRT2.1/NAR2.1 Transport System

Edith Laugier; Eléonore Bouguyon; Adeline Mauriès; Pascal Tillard; Alain Gojon; Laurence Lejay

In Arabidopsis (Arabidopsis thaliana), the NRT2.1 gene codes for the main component of the root nitrate (NO3−) high-affinity transport system (HATS). Due to the strong correlation generally found between high-affinity root NO3− influx and NRT2.1 mRNA level, it has been postulated that transcriptional regulation of NRT2.1 is a key mechanism for modulation of the HATS activity. However, this hypothesis has never been demonstrated, and is challenged by studies suggesting the occurrence of posttranscriptional regulation at the NRT2.1 protein level. To unambiguously clarify the respective roles of transcriptional and posttranscriptional regulations of NRT2.1, we generated transgenic lines expressing a functional 35S::NRT2.1 transgene in an atnrt2.1 mutant background. Despite a high and constitutive NRT2.1 transcript accumulation in the roots, the HATS activity was still down-regulated in the 35S::NRT2.1 transformants in response to repressive nitrogen or dark treatments that strongly reduce NRT2.1 transcription and NO3− HATS activity in the wild type. In some treatments, this was associated with a decline of NRT2.1 protein abundance, indicating posttranscriptional regulation of NRT2.1. However, in other instances, NRT2.1 protein level remained constant. Changes in abundance of NAR2.1, a partner protein of NRT2.1, closely followed those of NRT2.1, and thus could not explain the close-to-normal regulation of the HATS in the 35S::NRT2.1 transformants. Even if in certain conditions the transcriptional regulation of NRT2.1 contributes to a limited extent to the control of the HATS, we conclude from this study that posttranscriptional regulation of NRT2.1 and/or NAR2.1 plays a predominant role in the control of the NO3− HATS in Arabidopsis.


Plant Physiology | 2014

Glucose Elevates NITRATE TRANSPORTER2.1 Protein Levels and Nitrate Transport Activity Independently of Its HEXOKINASE1-Mediated Stimulation of NITRATE TRANSPORTER2.1 Expression

Femke de Jong; Kate Thodey; Laurence Lejay; Michael W. Bevan

Independent mechanisms link photosynthate availability with nitrate uptake and assimilation into amino acids. Mineral nutrient uptake and assimilation is closely coordinated with the production of photosynthate to supply nutrients for growth. In Arabidopsis (Arabidopsis thaliana), nitrate uptake from the soil is mediated by genes encoding high- and low-affinity transporters that are transcriptionally regulated by both nitrate and photosynthate availability. In this study, we have studied the interactions of nitrate and glucose (Glc) on gene expression, nitrate transport, and growth using glucose-insensitive2-1 (gin2-1), which is defective in sugar responses. We confirm and extend previous work by showing that HEXOKINASE1-mediated oxidative pentose phosphate pathway (OPPP) metabolism is required for Glc-mediated NITRATE TRANSPORTER2.1 (NRT2.1) expression. Treatment with pyruvate and shikimate, two products derived from intermediates of the OPPP that are destined for amino acid production, restores wild-type levels of NRT2.1 expression, suggesting that metabolites derived from OPPP metabolism can, together with Glc, directly stimulate high levels of NRT2.1 expression. Nitrate-mediated NRT2.1 expression is not influenced by gin2-1, showing that Glc does not influence NRT2.1 expression through nitrate-mediated mechanisms. We also show that Glc stimulates NRT2.1 protein levels and transport activity independently of its HEXOKINASE1-mediated stimulation of NRT2.1 expression, demonstrating another possible posttranscriptional mechanism influencing nitrate uptake. In gin2-1 plants, nitrate-responsive biomass growth was strongly reduced, showing that the supply of OPPP metabolites is essential for assimilating nitrate for growth.

Collaboration


Dive into the Laurence Lejay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Tillard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Tillard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Marc Lepetit

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Rodrigo A. Gutiérrez

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge