Laurence Luneville
Université Paris-Saclay
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurence Luneville.
Scientific Reports | 2017
David Simeone; Gordon James Thorogood; Da Huo; Laurence Luneville; Gianguido Baldinozzi; Vaclav Petricek; Florence Porcher; J. Ribis; Léo Mazerolles; L. Largeau; Jean François Bérar; Suzy Surble
Intuitively scientists accept that order can emerge from disorder and a significant amount of effort has been devoted over many years to demonstrate this. In metallic alloys and oxides, disorder at the atomic scale is the result of occupation at equivalent atomic positions by different atoms which leads to the material exhibiting a fully random or modulated scattering pattern. This arrangement has a substantial influence on the material’s properties, for example ionic conductivity. However it is generally accepted that oxides, such as defect fluorite as used for nuclear waste immobilization matrices and fuel cells, are the result of disorder at the atomic scale. To investigate how order at the atomic scale induces disorder at a larger scale length, we have applied different techniques to study the atomic composition of a homogeneous La2Zr2O7 pyrochlore, a textbook example of such a structure. Here we demonstrate that a pyrochlore, which is considered to be defect fluorite, is the result of intricate disorder due to a random distribution of fully ordered nano-domains. Our investigation provides new insight into the order disorder transformations in complex materials with regards to domain formation, resulting in a concord of chemistry with crystallography illustrating that order can induce disorder.
Scientific Reports | 2018
Gilles Demange; Sylvain Dépinoy; Laurence Luneville; David Simeone; Vassilis Pontikis
We present a multi-scale phase field modeling of stationary microstructures produced under 1 MeV krypton ion irradiation in a phase separating concentrated solid solution of silver and copper. We show that the mixture reaches ultimately a stationary micro-structural state made of phase domains with composition and size distribution mapped to the values of the incident flux of particles and of the temperature, variables that help defining a non equilibrium phase-diagram for the irradiated alloy. The modeling predicts the formation of diverse microstructures likely connected to spinodal hardening, thus opening the perspective of the on-purpose tuning of mechanically resistant microstructures and the preparation of metastable alloys with mechanical properties improved by comparison to counterparts obtained via classical thermo-mechanical treatments.
Journal of Physics: Condensed Matter | 2017
Vassilis Pontikis; Gianguido Baldinozzi; Laurence Luneville; David Simeone
We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.
MRS Proceedings | 2009
Dominique Gosset; Laurence Luneville; Gianguido Baldinozzi; David Simeone; A. Audren; Yann Leconte
Silicon carbide is one of the most studied materials for core components of the next generation of nuclear plants (Gen IV). In order to overcome its brittle properties, materials with nanometric grain size are considered. In spite of the growing interest for nano-structured materials, only few experiments deal with their behaviour under irradiation. To assess and predict their evolution under working conditions, it is important to characterize their microstructure and structure. To this purpose, we have studied microcrystalline and nanocrystalline samples before and after irradiation at room temperature with 4 MeV Au ions. In fact, it is well established that such irradiation conditions lead to amorphisation of the material, which can be restored after annealing at high temperature. We have performed isochronal annealings of both materials to point out the characteristics of the healing process and eventual differences related to the initial microstructure of the samples. To this purpose Grazing Incidence X-Ray Diffraction has been performed to determine the microstructure and structure parameters. We observe the amorphisation of both samples at similar doses but different annealing kinetics are observed. The amorphous nanocrystalline sample recovers its initial crystalline state at higher temperature than the microcrystalline one. This effect is clearly related to the initial microstructures of the materials. Therefore, the grain size appears as a key parameter for the structural stability and mechanical properties of this ceramic material under irradiation.
MRS Proceedings | 2009
Laurence Luneville; David Simeone; Gianguido Baldinozzi; Dominique Gosset; Yves Serruys
Even if the Binary Collision Approximation does not take into account relaxation processes at the end of the displacement cascade, the amount of displaced atoms calculated within this framework can be used to compare damages induced by different facilities like pressurized water reactors (PWR), fast breeder reactors (FBR), high temperature reactors (HTR) and ion beam facilities on a defined material. In this paper, a formalism is presented to evaluate the displacement cross-sections pointing out the effect of the anisotropy of nuclear reactions. From this formalism, the impact of fast neutrons (with a kinetic energy En superior to 1 MeV) is accurately described. This point allows calculating accurately the displacement per atom rates as well as primary and weighted recoil spectra. Such spectra provide useful information to select masses and energies of ions to perform realistic experiments in ion beam facilities.
MRS Proceedings | 2009
David Simeone; Gianguido Baldinozzi; Dominique Gosset; Laurence Luneville; Léo Mazerolles
Based on studies of simple oxides, this paper demonstrates that the specific energy deposition modes under irradiation induce modifications of materials over different length scales. On the other hand, we show the Landau phase transition theory, widely used to explain the structural stability of materials out of irradiation, can give a general framework to describe the behavior of these oxides under irradiation. The use of X-ray diffraction techniques coupled with the Raman spectroscopy allows defining in a quantitative way the phenomenological parameters leading to predictive results. This paper clearly shows that in two model systems, pure zirconia and spinels, no unexpected new phases are produced in these oxides irradiated at room temperature and with different fluxes. Such a phenomenological approach may be useful to study the radiation tolerance of many crystalline ceramics (e.g. the zirconium based americium ceramics).
Physical Review E | 2010
David Simeone; Laurence Luneville; Y. Serruys
Physical Review E | 2013
David Simeone; Gilles Demange; Laurence Luneville
Physical Review E | 2016
Laurence Luneville; K Mallick; Vassilis Pontikis; David Simeone
Journal of Nuclear Materials | 2017
G. Demange; E. Antoshchenkova; M. Hayoun; Laurence Luneville; David Simeone