Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurence Malandrin is active.

Publication


Featured researches published by Laurence Malandrin.


Molecular Microbiology | 1997

DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way.

S. Gaudriault; Laurence Malandrin; Jean-Pierre Paulin; M.-A. Barny

In Erwinia amylovora, the dsp region, required for pathogenicity on the host plant but not for hypersensitive elicitation on tobacco, is separated from the hrp region by 4 kb. The genetic analysis reported in this paper showed that this 4 kb region is not required for pathogenicity on pear seedlings. The environmental conditions allowing expression of a dsp::lacZ fusion were examined: expression was barely detected in rich medium at 30°C, and the highest expression was observed in M9 galactose minimal medium at 25°C. A dsp::uidA fusion appeared to be expressed only in a HrpL‐proficient strain, indicating that the dsp region, like the hrp region, is positively controlled via the alternative σ factor HrpL. Sequence analysis revealed that the dsp cluster encodes two genes, dspA (5517 bp) and dspB (420 bp), and that the insertions leading to the dsp::lacZ and the dsp::uidA fusions were within dspA. A HrpL‐dependent promoter sequence (GGAACC‐ N15‐CAACA) was identified upstream of dspA, and primer extension analysis detected four transcriptional starts 7, 8, 9 and 10 bp downstream of this sequence. A σ70 promoter sequence (TTGCCC‐N16‐GATAAT) was observed upstream of dspB. The functionality of this second promoter was confirmed by complementation analysis. This promoter allowed constitutive expression of dspB, as measured by the expression of a dspB::uidA fusion in rich medium. In M9 galactose medium, however, HrpL was shown to activate dspB, as expression of the dspB::uidA fusion was twofold higher in a HrpL+ background than in a HrpL− background. Transposon insertions in either dspA or dspB led to a non‐pathogenic phenotype. Thus, both DspA and DspB were required for E. amylovora pathogenicity, as dspB could be expressed independently of dspA. DspA and DspB were visualized as polypeptides with apparent sizes of 190 kDa and 15.5 kDa, respectively, when encoded in the T7 polymerase/promoter system. DspA, which showed homology with the protein predicted from the partial sequence of Pseudomonas syringae pv. tomato avrE transcriptional unit III, was shown to be secreted into the external medium via the Hrp secretion pathway. DspB was predicted to be acidic, like the Syc chaperone of Yersinia. A chaperone role for DspB was suggested further by the fact that DspA secretion required a functional DspB protein.


Veterinary Research | 2009

Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission.

Alain Chauvin; Emmanuelle Moreau; Sarah Bonnet; Olivier Plantard; Laurence Malandrin

Babesia, the causal agent of babesiosis, are tick-borne apicomplexan protozoa. True babesiae (Babesia genus sensu stricto) are biologically characterized by direct development in erythrocytes and by transovarial transmission in the tick. A large number of true Babesia species have been described in various vertebrate and tick hosts. This review presents the genus then discusses specific adaptations of Babesia spp. to their hosts to achieve efficient transmission. The main adaptations lead to long-lasting interactions which result in the induction of two reservoirs: in the vertebrate host during low long-term parasitemia and throughout the life cycle of the tick host as a result of transovarial and transstadial transmission. The molecular bases of these adaptations in vertebrate hosts are partially known but few of the tick-host interaction mechanisms have been elucidated.


Emerging Infectious Diseases | 2009

Natural Transmission of Zoonotic Babesia spp. by Ixodes ricinus Ticks

Claire A.M. Becker; Agnès Bouju-Albert; Maggy Jouglin; Alain Chauvin; Laurence Malandrin

To determine characteristics of natural transmission of Babesia sp. EU1 and B. divergens by adult Ixodes ricinus ticks, we examined tick salivary gland contents. We found that I. ricinus is a competent vector for EU1 and that their sporozoites directly invade erythrocytes. We conclude that EU1 is naturally transmitted by I. ricinus.


Nucleic Acids Research | 2014

The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

Andrew P. Jackson; Thomas D. Otto; Alistair C. Darby; Abhinay Ramaprasad; Dong Xia; Ignacio Echaide; Marisa Farber; Sunayna Gahlot; John Gamble; Dinesh Gupta; Yask Gupta; Louise Jackson; Laurence Malandrin; Tareq B. Malas; Ehab Moussa; Mridul Nair; Adam J. Reid; Mandy Sanders; Jyotsna Sharma; Alan Tracey; Michael A. Quail; William Weir; Jonathan M. Wastling; Neil Hall; Peter Willadsen; Klaus Lingelbach; Brian Shiels; Andy Tait; Matthew Berriman; David R. Allred

Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5′ ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct.


Molecular Microbiology | 2002

Chromosome replication patterns in the hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus (Methanococcus) jannaschii: Chromosome replication in A. fulgidus and M. jannaschii

Sophie Maisnier-Patin; Laurence Malandrin; Nils-Kåre Birkeland; Rolf Bernander

We analysed chromosome replication patterns in the two hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus (Methanococcus) jannaschii by marker frequency analysis (MFA). For A. fulgidus, the central region of the chromosomal physical map displayed a higher relative abundance in gene dosage during exponential growth, with two continuous gradients to a region of lower abundance at the diametrically opposite side of the genome map. This suggests bidirectional replication of the A. fulgidus chromosome from a single origin. The organization of the putative replication origin region relative to the cdc6, mcm and DNA polymerase genes differed from that reported for Pyrococcus species. No single replication origin or termination regions could be identified for M. jannaschii, adding to the list of unusual properties of this organism. The organization of the A. fulgidus cell cycle was characterized by flow cytometry analysis of the samples from which genomic DNA was extracted for MFA. The relative lengths of the cell cycle periods were found to be similar to those of crenarchaea.


Journal of Bacteriology | 2008

Cell Cycle Characteristics of Crenarchaeota: Unity among Diversity

Magnus Lundgren; Laurence Malandrin; Stefan Eriksson; Harald Huber; Rolf Bernander

The hyperthermophilic archaea Acidianus hospitalis, Aeropyrum pernix, Pyrobaculum aerophilum, Pyrobaculum calidifontis, and Sulfolobus tokodaii representing three different orders in the phylum Crenarchaeota were analyzed by flow cytometry and combined phase-contrast and epifluorescence microscopy. The overall organization of the cell cycle was found to be similar in all species, with a short prereplicative period and a dominant postreplicative period that accounted for 64 to 77% of the generation time. Thus, in all Crenarchaeota analyzed to date, cell division and initiation of chromosome replication occur in close succession, and a long time interval separates termination of replication from cell division. In Pyrobaculum, chromosome segregation overlapped with or closely followed DNA replication, and further genome separation appeared to occur concomitant with cellular growth. Cell division in P. aerophilum took place without visible constriction.


Veterinary Research | 2009

Individual heterogeneity in erythrocyte susceptibility to Babesia divergens is a critical factor for the outcome of experimental spleen-intact sheep infections

Laurence Malandrin; Maggy Jouglin; Emmanuelle Moreau; Alain Chauvin

Susceptibility of sheep erythrocytes to Babesia divergens was investigated in vitro and a high inter-individual variability in their ability to support parasite population development was demonstrated, with some individuals having refractory red blood cells (RBC). As neither changes in growth conditions nor the use of different B. divergens strains influenced the level of susceptibility, the main factor postulated for this variability is the erythrocyte itself. Sheep therefore represent an excellent in vitro model to study the parasite-erythrocyte interaction. In addition, the existence of refractory RBC should help in the identification of the erythrocyte components required for B. divergens development. Experimental infections were carried out on spleen-intact sheep characterized by refractory or fully susceptible erythrocyte types. These differences translated into the successful infection of only those animals with susceptible erythrocytes: infected animals showed no clinical signs, but maintained an asymptomatic persistent infection, as usually observed in the natural bovine host. Sheep therefore represent model organisms that can allow us to study interactions between B. divergens and its vertebrate host at different levels of biological organisation, from the target cell to the intact animal, and represent an experimental infection model of concomitant immunity. Only a low percentage (13%) of the sheep population tested possessed susceptible erythrocytes and the potential role of sheep as a natural host or reservoir of B. divergens is discussed.


Journal of Proteomics | 2014

Differential expression of Ixodes ricinus salivary gland proteins in the presence of the Borrelia burgdorferi sensu lato complex

Violaine Cotté; Laurence Sabatier; Gilles Schnell; Annick Carmi-Leroy; Jean-Claude Rousselle; Florence Arsène-Ploetze; Laurence Malandrin; Natacha Sertour; Abdelkader Namane; Elisabeth Ferquel; Valérie Choumet

UNLABELLED In Europe, Ixodes ricinus is the main vector of Lyme borreliosis. Their salivary glands play a critical role in the biological success of ticks. To better understand the cross-talk between Borrelia burgdorferi and tick salivary glands, we analyzed protein expression in the salivary glands of I. ricinus adult ticks that were infected by various strains of the B. burgdorferi sl complex. iTRAQ allowed the identification of more than 120 proteins, providing the first proteomic data pertaining to I. ricinus salivary glands. Among these proteins, only 12 were modulated in the presence of various Borrelia strains. Most of them are up-regulated and are involved in cell defense and protein synthesis and processing. Down-regulated proteins are mostly implicated in the cytoskeleton. The DIGE analysis allowed us to identify 35 proteins and showed the down-regulation of 4 proteins. All 15 proteins were not modulated by all strains. Overall, these observations showed that the presence of Borrelia in tick salivary glands is a factor of stress for the protein machinery, and also that some Borrelia strains produce a dysregulation of cytoskeletal proteins. Interestingly, a protein from Borrelia, OspA, was found in infected salivary glands. The consequence of its presence in salivary glands is discussed. BIOLOGICAL SIGNIFICANCE Lyme borreliosis is still the most prevalent arthropod-borne disease in the temperate regions of the northern hemisphere. The geographical distribution of Lyme borreliosis is expanding, especially towards higher altitudes and latitudes. Human pathogenic spirochetes causing Lyme borreliosis belong to the B. burgdorferi sensu lato complex. They are extracellular pathogens transmitted to humans through the bite of Ixodes spp. ticks. The bioactive molecules present in tick saliva not only promote tick feeding, but also create an advantageous microenvironment at the tick bite site for survival and replication of Borrelia bacteria. Investigation of the tick-host-pathogen interface would provide new strategies to control tick-borne infections. We chose to analyze the interaction of several strains of the B. burgdorferi sensu lato complex with I. ricinus salivary glands. We also investigated the presence of bacterial proteins in salivary glands. For these purposes, we undertook a proteomic study implying the complementary approaches of iTRAQ and DIGE. Our study allowed identifying several salivary markers of infection that were shown to vary according to the strain. Moreover, OspA, a bacterial protein was shown to be expressed in salivary glands and may be implied in the pathogenicity of some Borrelia strains.


Veterinary Research | 2011

The invasion process of bovine erythrocyte by Babesia divergens: knowledge from an in vitro assay

Yi Sun; Emmanuelle Moreau; Alain Chauvin; Laurence Malandrin

Babesia divergens is a tick-transmitted apicomplexan parasite for which asexual multiplication in its vertebrate hosts is restricted to erythrocytes. Current knowledge of invasion of these target cells is limited. An efficient in vitro invasion assay was set up to gain access to this information. Parasites prepared from infected RBC, lysed by electroporation, and mixed with bovine RBC in a selected synthetic medium (RPMI 1640 supplemented with calcium) were able to establish subsequent cultures with parasitemia ranging from 6 to 14%. Free parasites remaining in the invasion medium could be eliminated by Percoll gradient and culture could be pursued with the freshly invaded erythrocytes. In this way, the invasion time window could be shortened to obtain a synchronised start of the culture or to study the kinetics of invasion. With this assay we demonstrate that 1) erythrocyte invasion by B. divergens is a rapid process since 70% of the invasion-competent parasites invaded the RBC in less than 45 s; 2) all invasion-competent parasites achieved invasion within 10 min of contact; 3) one erythrocyte could be invaded concomitantly by two merozoites; 4) despite a synchronous start, the parasite population evolved heterogeneously resulting in a progressive loss of synchronisation. Western blot analysis of proteins collected from invasion medium were performed with sera from animals experimentally infected with B. divergens and highlighted several proteins. The dose-dependent, inhibitory effects of these sera on B. divergens invasion suggest that these proteins might be involved in the invasion process. Further investigations are required for their characterisation.


European Journal of Plant Pathology | 1996

Identification of two serological flagellar types (H1 and H2) inPseudomonas syringae pathovars

Christiane Guillorit-Rondeau; Laurence Malandrin; Régine Samson

Flagellar antigen specificity was studied for the speciesPseudomonas syringae, P. viridiflava andP. cichorii. After checking their motility, bacteria were reacted against six polyclonal antisera containing anti-O (LPS) and anti-H (flagellar) antibodies by indirect immunofluorescent staining. Two distinct flagellar serotypes (H1 and H2) were described. The distribution of H1 and H2 serotypes was then determined for a collection of 88 phytopathogenicPseudomonas strains. Serotype H1 was possessed byP. syringae pv.aptata (12 strains),P. s. pv.helianthi (2),P. s. pv.pisi (11), andP. s. pv.syringae (13). Serotype H2 was possessed byP. cichorii (2),P. s. pv.delphinii (1),P. s. pv.glycinea (4),P. s. pv.lacrymans (1),P. s. pv.mori (1),P. s. pv.morsprunorum (10),P. s. pv.persicae (1),P. s. pv.phaseolicola (8),P. s. pv.tabaci (10) andP. s. pv.tomato (1).P. viridiflava (5) revealed HI, H2 and untyped flagella. The following isolates were untypable by the H1/H2 system:P. corrugata (3),P. fluorescens (2),P. tolaasii (1). H1/H2 serotypes distribution is not linked toP. syringae O-serogroups. On the other hand, H1/H2 distribution seems remarkably linked to the new genospecies of theP. syringae group.

Collaboration


Dive into the Laurence Malandrin's collaboration.

Top Co-Authors

Avatar

Maggy Jouglin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Suzanne Bastian

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alain Chauvin

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Emmanuelle Moreau

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Claire Bonsergent

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sarah Bonnet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Qingli Niu

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Agoulon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claire A.M. Becker

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge