Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurence Poirier is active.

Publication


Featured researches published by Laurence Poirier.


Science of The Total Environment | 2014

A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species: The ragworm Hediste diversicolor and the bivalve mollusc Scrobicularia plana

Pierre-Emmanuel Buffet; Aurore Zalouk-Vergnoux; Amélie Châtel; Brigitte Berthet; Isabelle Métais; Hanane Perrein-Ettajani; Laurence Poirier; Andrea Luna-Acosta; Hélène Thomas-Guyon; Christine Risso-de Faverney; Marielle Guibbolini; Douglas Gilliland; Eugenia Valsami-Jones; Catherine Mouneyrac

Silver nanoparticles are widely used in a range of products and processes for their antibacterial properties, electrical and thermal conductivity. The fate and effects of Ag nanoparticles were examined in two endobenthic species (Scrobicularia plana, Hediste diversicolor), under environmentally realistic conditions in outdoor mesocosms exposed to Ag at 10 μg L(-1) in nanoparticulate (Ag NPs) or soluble salt (AgNO3) forms for 21 days. Labile Ag was determined in water and sediment by using diffusive gradient in thin films. Ag levels were equivalent in contaminated Ag NPs mesocosms to those contaminated with the soluble form. Bioaccumulation of Ag was observed for both species exposed to either Ag in the nanoparticulate or ionic forms. Concerning biomarker responses, both soluble and nanoparticulate Ag forms, induced defenses against oxidative stress, detoxification, apoptosis, genotoxicity and immunomodulation. Nevertheless, DNA damages measured by the comet assay in the digestive gland of S. plana, and Phenoloxidase and lysozyme activities in S. plana and H. diversicolor, respectively, were higher in the presence of Ag NPs compared to soluble Ag suggesting a specific nano effect.


Environmental Pollution | 2016

Is there any consistency between the microplastics found in the field and those used in laboratory experiments

Nam Ngoc Phuong; Aurore Zalouk-Vergnoux; Laurence Poirier; Abderrahmane Kamari; Amélie Châtel; Catherine Mouneyrac; Fabienne Lagarde

The ubiquitous presence and persistency of microplastics (MPs) in aquatic environments are of particular concern since they represent an increasing threat to marine organisms and ecosystems. Great differences of concentrations and/or quantities in field samples have been observed depending on geographical location around the world. The main types reported have been polyethylene, polypropylene, and polystyrene. The presence of MPs in marine wildlife has been shown in many studies focusing on ingestion and accumulation in different tissues, whereas studies of the biological effects of MPs in the field are scarce. If the nature and abundance/concentrations of MPs have not been systematically determined in field samples, this is due to the fact that the identification of MPs from environmental samples requires mastery and execution of several steps and techniques. For this reason and due to differences in sampling techniques and sample preparation, it remains difficult to compare the published studies. Most laboratory experiments have been performed with MP concentrations of a higher order of magnitude than those found in the field. Consequently, the ingestion and associated effects observed in exposed organisms have corresponded to great contaminant stress, which does not mimic the natural environment. Medium contaminations are produced with only one type of polymer of a precise sizes and homogenous shape whereas the MPs present in the field are known to be a mix of many types, sizes and shapes of plastic. Moreover, MPs originating in marine environments can be colonized by organisms and constitute the sorption support for many organic compounds present in environment that are not easily reproducible in laboratory. Determination of the mechanical and chemical effects of MPs on organisms is still a challenging area of research. Among the potential chemical effects it is necessary to differentiate those related to polymer properties from those due to the sorption/desorption of organic compounds.


Environmental Pollution | 2012

Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate: the Tellinid clam Scrobicularia plana.

Jin-Fen Pan; Pierre-Emmanuel Buffet; Laurence Poirier; Claude Amiard-Triquet; Douglas Gilliland; Yolaine Joubert; Paul Pilet; Marielle Guibbolini; Christine Risso-de Faverney; Michèle Roméo; Eugenia Valsami-Jones; Catherine Mouneyrac

Gold nanoparticles (AuNPs) have important technological applications resulting in an increased potential for release to the environment, and a greater possibility of toxicological effects. The marine bivalve Scrobicularia plana was exposed to AuNPs of size 5, 15 and 40 nm during a 16 d laboratory exposure at 100 μg Au L(-1). After exposure to AuNPs forming aggregates (>700 nm), the clams accumulated Au in their soft tissues. Biochemical (biomarkers) and behavioral (burrowing and feeding) responses were investigated. Au NPs were responsible of metallothionein induction (5, 40 nm), increased activities of catalase (15, 40 nm) and superoxide dismutase (40 nm) and of glutathione S-transferase by the three sizes of AuNPs indicating defense against oxidative stress. Exposure to AuNPs impaired burrowing behavior. However, it must be underlined that these effects were observed at a dose much higher than expected in the environment.


Journal of the Marine Biological Association of the United Kingdom | 2006

A suitable model for the biomonitoring of trace metal bioavailabilities in estuarine sediments: the annelid polychaete Nereis diversicolor

Laurence Poirier; Brigitte Berthet; Jean-Claude Amiard; Anne-Yvonne Jeantet; Claude Amiard-Triquet

The need to use biomonitors representative of the sedimentary compartment has been recognized, particularly in estuaries. Thus, trace metal contamination has been monitored in an infaunal polychaete worm Nereis diversicolor and sediments in the Seine estuary and comparatively in the relatively clean Authie estuary (French coast of the English Channel) over two years taking samples every three months at both sites. No correlations were shown between total metal (Ag, Cd, Cu, Pb, Zn) concentrations in raw sediments and ragworms. Because these worms are known to be good biomonitors of the bioavailabilities of sedimentary trace metals, it follows that total sediment metal concentrations have a poor predictive ecotoxicological value. Using a correction factor to minimize the influence of weight, it is possible to make a good estimation of the average metal concentrations in a population of worms at a given site, sampling only a limited number of specimens. Metallothioneins are often considered to be good biomarkers of the presence of significant availabilities of trace metals. Metallothionein-like proteins (MTLPs) are present in N. diversicolor, but there is no significant relationship between MTLPs and metal concentrations. This situation might result from the importance of metal-containing granules, both extra- and intracellular, in ragworms.


Ecotoxicology and Environmental Safety | 2013

Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food

Pierre-Emmanuel Buffet; Jin-Fen Pan; Laurence Poirier; Claude Amiard-Triquet; Jean-Claude Amiard; Pierre Gaudin; Christine Risso-de Faverney; Marielle Guibbolini; Douglas Gilliland; Eugenia Valsami-Jones; Catherine Mouneyrac

Because of their bactericidal effects, Ag nanoparticles (Ag NPs) have promising industrial development but could lead to potential ecological risks. The aim of this study was to examine the uptake and effect of silver (soluble or as lactate Ag NPs of 40 nm) at low concentrations (10 μg L(-1)) in the endobenthic bivalve Scrobicularia plana exposed, for 14 days, directly (water) or via the diet (microalgae). The stability of Ag NPs in seawater was examined using dynamic light scattering. Release of soluble Ag from Ag NPs in the experimental media was quantified by using diffusive gradient in thin film. Bioaccumulation of Ag in bivalves was measured by electrothermal atomic absorption spectrometry. Behavioural and biochemical biomarkers were determined in bivalves. Aggregation of Ag NPs and the release of soluble Ag from Ag NPs were observed in the experimental media. For both forms of Ag, bioaccumulation was much more important for waterborne than for dietary exposure. The response of oxidative stress biomarkers (catalase, glutathion S-transferase, superoxide dismutase) was more important after dietary than waterborne exposure to Ag (soluble and NPs). These defences were relatively efficient since they led to a lack of response of damage biomarkers. Burrowing was not affected for bivalves exposed directly or through the diet to both Ag forms but feeding behaviour was impaired after 10 days of dietary exposure. Since no differences of responses to Ag either soluble or nanoparticulate were observed, it seems that labile Ag released from Ag NPs was mainly responsible for toxicity.


Peptides | 2007

New Trichobrachins, 11-residue peptaibols from a marine strain of Trichoderma longibrachiatum

Nicolas Ruiz; Gaëtane Wielgosz-Collin; Laurence Poirier; Olivier Grovel; Karina Petit; Mustapha Mohamed-Benkada; Thibaut Robiou du Pont; John Bissett; Philippe Vérité; Gilles Barnathan; Yves François Pouchus

A marine strain of Trichoderma longibrachiatum isolated from blue mussels (Mytilus edulis) was investigated for short peptaibol production. Various 11-residue peptaibols, obtained as microheterogenous mixtures after a chromatographic fractionation, were identified by positive mass spectrometry fragmentation (ESI-IT-MS(n), CID-MS(n) and GC/EI-MS). Thirty sequences were identified, which is the largest number of analogous sequences so far observed at once. Twenty-one sequences were new, and nine others corresponded to peptaibols already described. These peptaibols belonged to the same peptidic family based on the model Ac-Aib-xxx-xxx-xxx-Aib-Pro-xxx-xxx-Aib-Pro-xxol. They were named trichobrachin A when the residue in position 2 was an Asn, and trichobrachin C when it was a Gln. Major chromatographic sub-fractions, corresponding to purified peptaibols, were assayed for their cytotoxic activity. Trichobrachin A-IX and trichobrachin C exhibited the highest activities. There was an exponential relation between their relative hydrophobicity and their cytotoxicity on KB cells.


Environmental Science and Pollution Research | 2014

Fate and effects of metal-based nanoparticles in two marine invertebrates, the bivalve mollusc Scrobicularia plana and the annelid polychaete Hediste diversicolor

Catherine Mouneyrac; Pierre-Emmanuel Buffet; Laurence Poirier; Aurore Zalouk-Vergnoux; Marielle Guibbolini; Christine Risso-de Faverney; Douglas Gilliland; Deborah Berhanu; Agnieszka Dybowska; Amélie Châtel; Hanane Perrein-Ettajni; Jin-Fen Pan; Hélène Thomas-Guyon; Paul Reip; Eugenia Valsami-Jones

The objective of this paper is to synthesize results from seven published research papers employing different experimental approaches to evaluate the fate of metal-based nanoparticles (Ag NPs, Au NPs, CuO NPs, CdS NPs, ZnO NPs) in the marine environment and their effects on two marine endobenthic species, the bivalve Scrobicularia plana and the ragworm Hediste diversicolor. The experiments were carried out under laboratory (microcosms) conditions or under environmentally realistic conditions in outdoor mesocosms. Based on results from these seven papers, we addressed the following research questions: (1) How did the environment into which nanoparticles were released affect their physicochemical properties?, (2) How did the route of exposure (seawater, food, sediment) influence bioaccumulation and effects?, (3) Which biomarkers were the most responsive? and (4) Which tools were the most efficient to evaluate the fate and effects of NPs in the marine environment? The obtained results showed that metal‐based NPs in general were highly agglomerated/aggregated in seawater. DGT tools could be used to estimate the bioavailability of metals released from NPs under soluble form in the aquatic environment. Both metal forms (nanoparticulate, soluble) were generally bioaccumulated in both species. Among biochemical tools, GST and CAT were the most sensitive revealing the enhancement of anti-oxidant defenses in both species exposed to sub-lethal concentrations of metal-based NPs. Apoptosis and genotoxicity were frequently observed.


Science of The Total Environment | 2014

Dioxin-like, non-dioxin like PCB and PCDD/F contamination in European eel (Anguilla anguilla) from the Loire estuarine continuum: spatial and biological variabilities

I. Blanchet-Letrouvé; Aurore Zalouk-Vergnoux; A. Vénisseau; M. Couderc; B. Le Bizec; P. Elie; Christine Herrenknecht; Catherine Mouneyrac; Laurence Poirier

To characterize the eel contamination by dioxin-like (dl) and non dioxin-like (ndl) polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), sixty-two eels from the Loire estuary (France) were analyzed. PCB contamination significantly increased from glass eel stage (3.71 ± 1.85 and 15.2 ± 4.2 ng g(-1) dw) to other life stages (for yellow eels: 62.8 ± 34.4 and 382 ± 182 ng g(-1) dw; for silver eels: 93.7 ± 56.3 and 463 ± 245 ng g(-1) dw respectively for dl and ndl-PCBs). An inter-site variability based on PCB levels and profiles was observed among the three studied sites. For glass eels, the profile was mainly characterized by less chlorinated PCBs contrary to the other eels, displaying a different bioaccumulation pathway. Overall, the contamination level in the eels from this estuary was shown to be low for PCDD/Fs and intermediate for dl and ndl-PCBs, compared to other international/national areas. However, more than 60% of the studied silver eels displayed higher values for PCDD/F and dl-PCB WHO2005 TEQ than the EU permissible level of 10 pg g(-1) ww. This statement suggests a potential exposure to PCBs through eel consumption, especially with silver eels, and also points out apparent contamination that could eventually affect the reproductive success of the species.


Science of The Total Environment | 2015

Occurrence of POPs and other persistent organic contaminants in the European eel (Anguilla anguilla) from the Loire estuary, France

M. Couderc; Laurence Poirier; Aurore Zalouk-Vergnoux; Abderrahmane Kamari; I. Blanchet-Letrouvé; Philippe Marchand; A. Vénisseau; Bruno Veyrand; Catherine Mouneyrac; B. Le Bizec

The chemical contamination of the Loire estuary by three classes of persistent organic pollutants (POPs): the polychlorinated biphenyls (PCBs), the polybrominated diphenyl ethers (PBDEs) and the perfluorinated and polyfluorinated alkyl substances (PFAS), and three families of organic contaminants, the alkylphenols (APs), the polycyclic aromatic hydrocarbon metabolites (OH-PAHs) and the bisphenol A (BPA) were investigated in the muscles and bile of European eel (Anguilla anguilla). Yellow eels (n=30) were caught in three different points along the estuary to highlight variations between sites and sources of contaminations. Silver eels (n=15) were also studied to compare contaminant impregnation between different life stages of the species. Average concentrations in the muscles of the eel ranged between: 857 and 4358 ng/gLW for the PCBs, 26 and 46 ng/gLW for the PBDEs, 130 and 1293 ng/gLW for the PFAS; and in bile: 31 and 286 μg/g protein for the APs, 9 and 26 μg/g protein for the OH-PAHs and ND-1213 μg/g protein for the BPA. Among PCBs, PCB 153 (40% contribution to the sum of PCBs) was predominant in all eel muscles. PBDE 47 (60%) was the most predominant PBDE congeners, while perfluorooctanesulfonic acid (85%) was the most widely detected PFAS. For APs, 4p-nonylphenol (91%) was the most abundant and for the OH-PAHs, it was 1OH-Pyrene (63%). All the eels exceeded the environmental quality standards (EQS) for biota for the PBDEs and about 75% were higher than the EQS specific to PFOS. Finally, 20% of the analyzed eels presented TEQ concentrations above the maximum limits for lipid-rich species. These results supplied new data on the occurrence, levels, and patterns of 53 organic chemicals in the eels from the Loire estuary and they highlighted the need of further investigations focused notably on the potential effects of these chemicals on this species and their analysis in the water and sediments of the estuary.


Environmental Toxicology and Chemistry | 2015

Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana

Pierre-Emmanuel Buffet; Aurore Zalouk-Vergnoux; Laurence Poirier; Christelle Lopes; Christine Risso-de-Faverney; Marielle Guibbolini; Douglas Gilliland; Hanane Perrein-Ettajani; Eugenia Valsami-Jones; Catherine Mouneyrac

Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems.

Collaboration


Dive into the Laurence Poirier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marielle Guibbolini

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas Gilliland

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Christine Risso-de Faverney

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge