Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurence Vernis is active.

Publication


Featured researches published by Laurence Vernis.


Journal of Cell Biology | 2005

Temporal separation of replication and recombination requires the intra-S checkpoint.

Peter Meister; Angela Taddei; Laurence Vernis; Mickaël Poidevin; Susan M. Gasser; Giuseppe Baldacci

In response to DNA damage and replication pausing, eukaryotes activate checkpoint pathways that prevent genomic instability by coordinating cell cycle progression with DNA repair. The intra-S-phase checkpoint has been proposed to protect stalled replication forks from pathological rearrangements that could result from unscheduled recombination. On the other hand, recombination may be needed to cope with either stalled forks or double-strand breaks resulting from hydroxyurea treatment. We have exploited fission yeast to elucidate the relationship between replication fork stalling, loading of replication and recombination proteins onto DNA, and the intra-S checkpoint. Here, we show that a functional recombination machinery is not essential for recovery from replication fork arrest and instead can lead to nonfunctional fork structures. We find that Rad22-containing foci are rare in S-phase cells, but peak in G2 phase cells after a perturbed S phase. Importantly, we find that the intra-S checkpoint is necessary to avoid aberrant strand-exchange events during a hydroxyurea block.


Free Radical Biology and Medicine | 2012

Redox-sensitive YFP sensors monitor dynamic nuclear and cytosolic glutathione redox changes.

Michèle Dardalhon; Chitranshu Kumar; Ismail Iraqui; Laurence Vernis; Guy Kienda; Agata Banach-Latapy; Tiantian He; Roland Chanet; Gérard Faye; Caryn E. Outten; Meng-Er Huang

Intracellular redox homeostasis is crucial for many cellular functions but accurate measurements of cellular compartment-specific redox states remain technically challenging. To better characterize redox control in the nucleus, we targeted a yellow fluorescent protein-based redox sensor (rxYFP) to the nucleus of the yeast Saccharomyces cerevisiae. Parallel analyses of the redox state of nucleus-rxYFP and cytosol-rxYFP allowed us to monitor distinctively dynamic glutathione (GSH) redox changes within these two compartments under a given condition. We observed that the nuclear GSH redox environment is highly reducing and similar to the cytosol under steady-state conditions. Furthermore, these sensors are able to detect redox variations specific for their respective compartments in glutathione reductase (Glr1) and thioredoxin pathway (Trr1, Trx1, Trx2) mutants that have altered subcellular redox environments. Our mutant redox data provide in vivo evidence that glutathione and the thioredoxin redox systems have distinct but overlapping functions in controlling subcellular redox environments. We also monitored the dynamic response of nucleus-rxYFP and cytosol-rxYFP to GSH depletion and to exogenous low and high doses of H₂O₂ bursts. These observations indicate a rapid and almost simultaneous oxidation of both nucleus-rxYFP and cytosol-rxYFP, highlighting the robustness of the rxYFP sensors in measuring real-time compartmental redox changes. Taken together, our data suggest that the highly reduced yeast nuclear and cytosolic redox states are maintained independently to some extent and under distinct but subtle redox regulation. Nucleus- and cytosol-rxYFP register compartment-specific localized redox fluctuations that may involve exchange of reduced and/or oxidized glutathione between these two compartments. Finally, we confirmed that GSH depletion has profound effects on mitochondrial genome stability but little effect on nuclear genome stability, thereby emphasizing that the critical requirement for GSH during growth is linked to a mitochondria-dependent process.


Molecular and Cellular Biology | 2004

A New Saccharomyces cerevisiae Strain with a Mutant Smt3-Deconjugating Ulp1 Protein Is Affected in DNA Replication and Requires Srs2 and Homologous Recombination for Its Viability

Christine Soustelle; Laurence Vernis; Karine Fréon; Anne Reynaud-Angelin; Roland Chanet; Francis Fabre; Martine Heude

ABSTRACT The Saccharomyces cerevisiae Srs2 protein is involved in DNA repair and recombination. In order to gain better insight into the roles of Srs2, we performed a screen to identify mutations that are synthetically lethal with an srs2 deletion. One of them is a mutated allele of the ULP1 gene that encodes a protease specifically cleaving Smt3-protein conjugates. This allele, ulp1-I615N, is responsible for an accumulation of Smt3-conjugated proteins. The mutant is unable to grow at 37°C. At permissive temperatures, it still shows severe growth defects together with a strong hyperrecombination phenotype and is impaired in meiosis. Genetic interactions between ulp1 and mutations that affect different repair pathways indicated that the RAD51-dependent homologous recombination mechanism, but not excision resynthesis, translesion synthesis, or nonhomologous end-joining processes, is required for the viability of the mutant. Thus, both Srs2, believed to negatively control homologous recombination, and the process of recombination per se are essential for the viability of the ulp1 mutant. Upon replication, mutant cells accumulate single-stranded DNA interruptions. These structures are believed to generate different recombination intermediates. Some of them are fixed by recombination, and others require Srs2 to be reversed and fixed by an alternate pathway.


Free Radical Biology and Medicine | 2013

Redox-sensitive YFP sensors for monitoring dynamic compartment-specific glutathione redox state

Agata Banach-Latapy; Tiantian He; Michèle Dardalhon; Laurence Vernis; Roland Chanet; Meng-Er Huang

Intracellular redox homeostasis is crucial for many cellular functions but accurate measurements of cellular compartment-specific redox states remain technically challenging. Genetically encoded biosensors including the glutathione-specific redox-sensitive yellow fluorescent protein (rxYFP) may provide an alternative way to overcome the limitations of conventional glutathione/glutathione disulfide (GSH/GSSG) redox measurements. This study describes the use of rxYFP sensors for investigating compartment-specific steady redox state and their dynamics in response to stress in human cells. RxYFP expressed in the cytosol, nucleus, or mitochondrial matrix of HeLa cells was responsive to the intracellular redox state changes induced by reducing as well as oxidizing agents. Compartment-targeted rxYFP sensors were able to detect different steady-state redox conditions among the cytosol, nucleus, and mitochondrial matrix. These sensors expressed in human epidermal keratinocytes HEK001 responded to stress induced by ultraviolet A radiation in a dose-dependent manner. Furthermore, rxYFP sensors were able to sense dynamic and compartment-specific redox changes caused by 100 μM hydrogen peroxide (H2O2). Mitochondrial matrix-targeted rxYFP displayed a greater dynamics of oxidation in response to a H2O2 challenge than the cytosol- and nucleus-targeted sensors, largely due to a more alkaline local pH environment. These observations support the view that mitochondrial glutathione redox state is maintained and regulated independently from that of the cytosol and nucleus. Taken together, our data show the robustness of the rxYFP sensors to measure compartmental redox changes in human cells. Complementary to existing redox sensors and conventional redox measurements, compartment-targeted rxYFP sensors provide a novel tool for examining mammalian cell redox homeostasis, permitting high-resolution readout of steady glutathione state and dynamics of redox changes.


Carcinogenesis | 2013

Peroxiredoxin 1 knockdown potentiates β-lapachone cytotoxicity through modulation of reactive oxygen species and mitogen-activated protein kinase signals

Tiantian He; Agata Banach-Latapy; Laurence Vernis; Michèle Dardalhon; Roland Chanet; Meng-Er Huang

Peroxiredoxin (Prx) 1 is a member of the thiol-specific peroxidases family and plays diverse roles such as H2O2 scavenger, redox signal transducer and molecular chaperone. Prx1 has been reported to be involved in protecting cancer cells against various therapeutic challenges. We investigated how modulations of intracellular redox system affect cancer cell sensitivity to reactive oxygen species (ROS)-generating drugs. We observed that stable and transient Prx1 knockdown significantly enhanced HeLa cell sensitivity to β-lapachone (β-lap), a potential anticancer agent. Prx1 knockdown markedly potentiated 2 µM β-lap-induced cytotoxicity through ROS accumulation. This effect was largely NAD(P)H:quinone oxidoreductase 1 dependent and associated with a decrease in poly(ADP-ribose) polymerase 1 protein levels, phosphorylation of JNK, p38 and Erk proteins in mitogen-activated protein kinase (MAPK) pathways and a decrease in thioredoxin 1 (Trx1) protein levels. Trx1 serves as an electron donor for Prx1 and is overexpressed in Prx1 knockdown cells. Based on the fact that Prx1 is a major ROS scavenger and a partner of at least ASK1 and JNK, two key components of MAPK pathways, we propose that Prx1 knockdown-induced sensitization to β-lap is achieved through combined action of accumulation of ROS and enhancement of MAPK pathway activation, leading to cell apoptosis. These data support the view that modulation of intracellular redox state could be an alternative approach to enhance cancer cell sensitivity to ROS-generating drugs or to overcome some types of drug resistance.


FEBS Journal | 2012

A S‐adenosylmethionine methyltransferase‐like domain within the essential, Fe‐S‐containing yeast protein Dre2

Nicolas Soler; Constantin T. Craescu; Jacques Gallay; Yves-Michel Frapart; Daniel Mansuy; Bertrand Raynal; Giuseppe Baldacci; Annalisa Pastore; Meng-Er Huang; Laurence Vernis

Yeast Dre2 is an essential Fe‐S cluster‐containing protein that has been implicated in cytosolic Fe‐S protein biogenesis and in cell death regulation in response to oxidative stress. Its absence in yeast can be complemented by the human homologous antiapoptotic protein cytokine‐induced apoptosis inhibitor 1 (also known as anamorsin), suggesting at least one common function. Using complementary techniques, we have investigated the biochemical and biophysical properties of Dre2. We show that it contains an N‐terminal domain whose structure in solution consists of a stable well‐structured monomer with an overall typical S‐adenosylmethionine methyltransferase fold lacking two α‐helices and a β‐strand. The highly conserved C‐terminus of Dre2, containing two Fe‐S clusters, influences the flexibility of the N‐terminal domain. We discuss the hypotheses that the activity of the N‐terminal domain could be modulated by the redox activity of Fe‐S clusters containing the C‐terminus domain in vivo.


Molecular Microbiology | 2011

Interaction between the reductase Tah18 and highly conserved Fe‐S containing Dre2 C‐terminus is essential for yeast viability

Nicolas Soler; Emmanuelle Delagoutte; Simona Miron; Céline Facca; Dorothée Baïlle; Benoît D'Autréaux; Gil Craescu; Yves-Michel Frapart; Daniel Mansuy; Giuseppe Baldacci; Meng-Er Huang; Laurence Vernis

Tah18–Dre2 is a recently identified yeast protein complex, which is highly conserved in human and has been implicated in the regulation of oxidative stress induced cell death and in cytosolic Fe‐S proteins synthesis. Tah18 is a diflavin oxido‐reductase with binding sites for flavin mononucleotide, flavin adenine dinucleotide and nicotinamide adenine dinucleotide phosphate, which is able to transfer electrons to Dre2 Fe‐S clusters. In this work we characterized in details the interaction between Tah18 and Dre2, and analysed how it conditions yeast viability. We show that Dre2 C‐terminus interacts in vivo and in vitro with the flavin mononucleotide‐ and flavin adenine dinucleotide‐binding sites of Tah18. Neither the absence of the electron donor nicotinamide adenine dinucleotide phosphate‐binding domain in purified Tah18 nor the absence of Fe‐S in aerobically purified Dre2 prevents the binding in vitro. In vivo, when this interaction is affected in a dre2 mutant, yeast viability is reduced. Conversely, enhancing artificially the interaction between mutated Dre2 and Tah18 restores cellular viability despite still reduced cytosolic Fe‐S cluster biosynthesis. We conclude that Tah18–Dre2 interaction in vivo is essential for yeast viability. Our study may provide new insight into the survival/death switch involving this complex in yeast and in human cells.


Journal of Experimental & Clinical Cancer Research | 2015

PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: a potential new therapeutic perspective for an old drug

Tiantian He; Elie Hatem; Laurence Vernis; Ming Lei; Meng-Er Huang

BackgroundMany promising anticancer molecules are abandoned during the course from bench to bedside due to lack of clear-cut efficiency and/or severe side effects. Vitamin K3 (vitK3) is a synthetic naphthoquinone exhibiting significant in vitro and in vivo anticancer activity against multiple human cancers, and has therapeutic potential when combined with other anticancer molecules. The major mechanism for the anticancer activity of vitK3 is the generation of cytotoxic reactive oxygen species (ROS). We thus reasoned that a rational redox modulation of cancer cells could enhance vitK3 anticancer efficiency.MethodsCancer cell lines with peroxiredoxin 1 (PRX1) gene transiently or stably knocked-down and corresponding controls were exposed to vitK3 as well as a set of anticancer molecules, including vinblastine, taxol, doxorubicin, daunorubicin, actinomycin D and 5-fluorouracil. Cytotoxic effects and cell death events were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based assay, cell clonogenic assay, measurement of mitochondrial membrane potential and annexin V/propidium iodide double staining. Global ROS accumulation and compartment-specific H2O2 generation were determined respectively by a redox-sensitive chemical probe and H2O2-sensitive sensor HyPer. Oxidation of endogenous antioxidant proteins including TRX1, TRX2 and PRX3 was monitored by redox western blot.ResultsWe observed that the PRX1 knockdown in HeLa and A549 cells conferred enhanced sensitivity to vitK3, reducing substantially the necessary doses to kill cancer cells. The same conditions (combination of vitK3 and PRX1 knockdown) caused little cytotoxicity in non-cancerous cells, suggesting a cancer-cell-selective property. Increased ROS accumulation had a crucial role in vitK3-induced cell death in PRX1 knockdown cells. The use of H2O2-specific sensors HyPer revealed that vitK3 lead to immediate accumulation of H2O2 in the cytosol, nucleus, and mitochondrial matrix. PRX1 silencing significantly up-regulated mRNA and protein levels of NRH:quinone oxidoreductase 2, which was partially responsible for vitK3-induced ROS accumulation and consequent cell death.ConclusionOur data suggest that PRX1 inactivation could represent an interesting strategy to enhance cancer cell sensitivity to vitK3, providing a potential new therapeutic perspective for this old molecule. Conceptually, a combination of drugs that modulate intracellular redox states and drugs that operate through the generation of ROS could be a new therapeutic strategy for cancer treatment.


Scientific Reports | 2016

DNA replication inhibitor hydroxyurea alters Fe-S centers by producing reactive oxygen species in vivo

Meng-Er Huang; Céline Facca; Zakaria Fatmi; Dorothée Baïlle; Safia Bénakli; Laurence Vernis

Redox homeostasis is tightly controlled in cells as it is critical for most cellular functions. Iron-Sulfur centers (Fe-S) are metallic cofactors with electronic properties that are associated with proteins and allow fine redox tuning. Following the observation that altered Fe-S biosynthesis is correlated with a high sensitivity to hydroxyurea (HU), a potent DNA replication blocking agent, we identified that oxidative stress response pathway under the control of the main regulator Yap1 attenuates HU deleterious effects, as it significantly increases resistance to HU, Fe-S biosynthesis and DNA replication kinetics in the presence of HU. Yap1 effect is mediated at least in part through up-regulation of two highly conserved genes controlling cytosolic Fe-S biosynthesis and oxidative stress, Dre2 and Tah18. We next observed that HU produces deleterious effects on cytosolic Fe-S clusters in proteins in vivo but not in vitro, suggesting that HU’s impact on Fe-S in vivo is mediated by cellular metabolism. Finally, we evidenced that HU exposure was accompanied by production of reactive oxygen species intracellularly. Altogether, this study provides mechanistic insight on the initial observation that mutants with altered Fe-S biosynthesis are highly sensitive to HU and uncovers a novel mechanism of action of this widely used DNA replication inhibitor.


PLOS ONE | 2014

Loss of the Thioredoxin Reductase Trr1 Suppresses the Genomic Instability of Peroxiredoxin tsa1 Mutants

Sandrine Ragu; Michèle Dardalhon; Sushma Sharma; Ismail Iraqui; Géraldine Buhagiar-Labarchède; Virginie Grondin; Guy Kienda; Laurence Vernis; Roland Chanet; Richard D. Kolodner; Meng-Er Huang; Gérard Faye

The absence of Tsa1, a key peroxiredoxin that scavenges H2O2 in Saccharomyces cerevisiae, causes the accumulation of a broad spectrum of mutations. Deletion of TSA1 also causes synthetic lethality in combination with mutations in RAD51 or several key genes involved in DNA double-strand break repair. In the present study, we propose that the accumulation of reactive oxygen species (ROS) is the primary cause of genome instability of tsa1Δ cells. In searching for spontaneous suppressors of synthetic lethality of tsa1Δ rad51Δ double mutants, we identified that the loss of thioredoxin reductase Trr1 rescues their viability. The trr1Δ mutant displayed a CanR mutation rate 5-fold lower than wild-type cells. Additional deletion of TRR1 in tsa1Δ mutant reduced substantially the CanR mutation rate of tsa1Δ strain (33-fold), and to a lesser extent, of rad51Δ strain (4-fold). Loss of Trr1 induced Yap1 nuclear accumulation and over-expression of a set of Yap1-regulated oxido-reductases with antioxidant properties that ultimately re-equilibrate intracellular redox environment, reducing substantially ROS-associated DNA damages. This trr1Δ -induced effect was largely thioredoxin-dependent, probably mediated by oxidized forms of thioredoxins, the primary substrates of Trr1. Thioredoxin Trx1 and Trx2 were constitutively and strongly oxidized in the absence of Trr1. In trx1Δ trx2Δ cells, Yap1 was only moderately activated; consistently, the trx1Δ trx2Δ double deletion failed to efficiently rescue the viability of tsa1Δ rad51Δ. Finally, we showed that modulation of the dNTP pool size also influences the formation of spontaneous mutation in trr1Δ and trx1Δ trx2Δ strains. We present a tentative model that helps to estimate the respective impact of ROS level and dNTP concentration in the generation of spontaneous mutations.

Collaboration


Dive into the Laurence Vernis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorothée Baïlle

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge