Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent A. F. Frantz is active.

Publication


Featured researches published by Laurent A. F. Frantz.


Molecular Biology and Evolution | 2013

Pig Domestication and Human-Mediated Dispersal in Western Eurasia Revealed through Ancient DNA and Geometric Morphometrics

Claudio Ottoni; Linus Girdland Flink; Allowen Evin; Christina Geörg; Bea De Cupere; Wim Van Neer; László Bartosiewicz; Anna Linderholm; Ross Barnett; Joris Peters; Ronny Decorte; Marc Waelkens; Nancy Vanderheyden; François-Xavier Ricaut; Canan Çakirlar; Özlem Çevik; A. Rus Hoelzel; Marjan Mashkour; Azadeh Fatemeh Mohaseb Karimlu; Shiva Sheikhi Seno; Julie Daujat; Fiona Brock; Ron Pinhasi; Hitomi Hongo; Miguel Pérez-Enciso; Morten Rasmussen; Laurent A. F. Frantz; Hendrik-Jan Megens; R.P.M.A. Crooijmans; M.A.M. Groenen

Zooarcheological evidence suggests that pigs were domesticated in Southwest Asia ∼8,500 BC. They then spread across the Middle and Near East and westward into Europe alongside early agriculturalists. European pigs were either domesticated independently or more likely appeared so as a result of admixture between introduced pigs and European wild boar. As a result, European wild boar mtDNA lineages replaced Near Eastern/Anatolian mtDNA signatures in Europe and subsequently replaced indigenous domestic pig lineages in Anatolia. The specific details of these processes, however, remain unknown. To address questions related to early pig domestication, dispersal, and turnover in the Near East, we analyzed ancient mitochondrial DNA and dental geometric morphometric variation in 393 ancient pig specimens representing 48 archeological sites (from the Pre-Pottery Neolithic to the Medieval period) from Armenia, Cyprus, Georgia, Iran, Syria, and Turkey. Our results reveal the first genetic signatures of early domestic pigs in the Near Eastern Neolithic core zone. We also demonstrate that these early pigs differed genetically from those in western Anatolia that were introduced to Europe during the Neolithic expansion. In addition, we present a significantly more refined chronology for the introduction of European domestic pigs into Asia Minor that took place during the Bronze Age, at least 900 years earlier than previously detected. By the 5th century AD, European signatures completely replaced the endemic lineages possibly coinciding with the widespread demographic and societal changes that occurred during the Anatolian Bronze and Iron Ages.


PLOS Genetics | 2012

Regions of Homozygosity in the Porcine Genome: Consequence of Demography and the Recombination Landscape

Mirte Bosse; Hendrik Jan Megens; Ole Madsen; Yogesh Paudel; Laurent A. F. Frantz; Lawrence B. Schook; R.P.M.A. Crooijmans; M.A.M. Groenen

Inbreeding has long been recognized as a primary cause of fitness reduction in both wild and domesticated populations. Consanguineous matings cause inheritance of haplotypes that are identical by descent (IBD) and result in homozygous stretches along the genome of the offspring. Size and position of regions of homozygosity (ROHs) are expected to correlate with genomic features such as GC content and recombination rate, but also direction of selection. Thus, ROHs should be non-randomly distributed across the genome. Therefore, demographic history may not fully predict the effects of inbreeding. The porcine genome has a relatively heterogeneous distribution of recombination rate, making Sus scrofa an excellent model to study the influence of both recombination landscape and demography on genomic variation. This study utilizes next-generation sequencing data for the analysis of genomic ROH patterns, using a comparative sliding window approach. We present an in-depth study of genomic variation based on three different parameters: nucleotide diversity outside ROHs, the number of ROHs in the genome, and the average ROH size. We identified an abundance of ROHs in all genomes of multiple pigs from commercial breeds and wild populations from Eurasia. Size and number of ROHs are in agreement with known demography of the populations, with population bottlenecks highly increasing ROH occurrence. Nucleotide diversity outside ROHs is high in populations derived from a large ancient population, regardless of current population size. In addition, we show an unequal genomic ROH distribution, with strong correlations of ROH size and abundance with recombination rate and GC content. Global gene content does not correlate with ROH frequency, but some ROH hotspots do contain positive selected genes in commercial lines and wild populations. This study highlights the importance of the influence of demography and recombination on homozygosity in the genome to understand the effects of inbreeding.


BMC Genomics | 2012

A high density recombination map of the pig reveals a correlation between sex-specific recombination and GC content

Flavie Tortereau; Bertrand Servin; Laurent A. F. Frantz; Hendrik Jan Megens; Denis Milan; G. A. Rohrer; Ralph T Wiedmann; Jonathan E. Beever; Alan Archibald; Lawrence B. Schook; M.A.M. Groenen

BackgroundThe availability of a high-density SNP genotyping chip and a reference genome sequence of the pig (Sus scrofa) enabled the construction of a high-density linkage map. A high-density linkage map is an essential tool for further fine-mapping of quantitative trait loci (QTL) for a variety of traits in the pig and for a better understanding of mechanisms underlying genome evolution.ResultsFour different pig pedigrees were genotyped using the Illumina PorcineSNP60 BeadChip. Recombination maps for the autosomes were computed for each individual pedigree using a common set of markers. The resulting genetic maps comprised 38,599 SNPs, including 928 SNPs not positioned on a chromosome in the current assembly of the pig genome (build 10.2). The total genetic length varied according to the pedigree, from 1797 to 2149 cM. Female maps were longer than male maps, with a notable exception for SSC1 where male maps are characterized by a higher recombination rate than females in the region between 91–250 Mb. The recombination rates varied among chromosomes and along individual chromosomes, regions with high recombination rates tending to cluster close to the chromosome ends, irrespective of the position of the centromere. Correlations between main sequence features and recombination rates were investigated and significant correlations were obtained for all the studied motifs. Regions characterized by high recombination rates were enriched for specific GC-rich sequence motifs as compared to low recombinant regions. These correlations were higher in females than in males, and females were found to be more recombinant than males at regions where the GC content was greater than 0.4.ConclusionsThe analysis of the recombination rate along the pig genome highlighted that the regions exhibiting higher levels of recombination tend to cluster around the ends of the chromosomes irrespective of the location of the centromere. Major sex-differences in recombination were observed: females had a higher recombination rate within GC-rich regions and exhibited a stronger correlation between recombination rates and specific sequence features.


Science | 2016

Genomic and archaeological evidence suggest a dual origin of domestic dogs

Laurent A. F. Frantz; Victoria Mullin; Maud Pionnier-Capitan; Ophélie Lebrasseur; Morgane Ollivier; Angela R. Perri; Anna Linderholm; Valeria Mattiangeli; Matthew D. Teasdale; Evangelos A. Dimopoulos; Anne Tresset; Marilyne Duffraisse; Finbar McCormick; László Bartosiewicz; Erika Gál; Éva Ágnes Nyerges; Mikhail V. Sablin; Stéphanie Bréhard; Marjan Mashkour; Adrian Bălăşescu; Benjamin Gillet; Sandrine Hughes; Olivier Chassaing; Christophe Hitte; Jean-Denis Vigne; Keith Dobney; Catherine Hänni; Daniel G. Bradley; Greger Larson

A dogged investigation of domestication The history of how wolves became our pampered pooches of today has remained controversial. Frantz et al. describe high-coverage sequencing of the genome of an Irish dog from the Bronze Age as well as ancient dog mitochondrial DNA sequences. Comparing ancient dogs to a modern worldwide panel of dogs shows an old, deep split between East Asian and Western Eurasian dogs. Thus, dogs were domesticated from two separate wolf populations on either side of the Old World. Science, this issue p. 1228 Dogs may have been domesticated independently in Eastern and Western Eurasia from distinct wolf populations. The geographic and temporal origins of dogs remain controversial. We generated genetic sequences from 59 ancient dogs and a complete (28x) genome of a late Neolithic dog (dated to ~4800 calendar years before the present) from Ireland. Our analyses revealed a deep split separating modern East Asian and Western Eurasian dogs. Surprisingly, the date of this divergence (~14,000 to 6400 years ago) occurs commensurate with, or several millennia after, the first appearance of dogs in Europe and East Asia. Additional analyses of ancient and modern mitochondrial DNA revealed a sharp discontinuity in haplotype frequencies in Europe. Combined, these results suggest that dogs may have been domesticated independently in Eastern and Western Eurasia from distinct wolf populations. East Eurasian dogs were then possibly transported to Europe with people, where they partially replaced European Paleolithic dogs.


Genome Biology | 2013

Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus

Laurent A. F. Frantz; Joshua G. Schraiber; Ole Madsen; Hendrik Jan Megens; Mirte Bosse; Yogesh Paudel; Gono Semiadi; Erik Meijaard; Ning Li; R.P.M.A. Crooijmans; Alan Archibald; Montgomery Slatkin; Lawrence B. Schook; Greger Larson; M.A.M. Groenen

BackgroundElucidating the process of speciation requires an in-depth understanding of the evolutionary history of the species in question. Studies that rely upon a limited number of genetic loci do not always reveal actual evolutionary history, and often confuse inferences related to phylogeny and speciation. Whole-genome data, however, can overcome this issue by providing a nearly unbiased window into the patterns and processes of speciation. In order to reveal the complexity of the speciation process, we sequenced and analyzed the genomes of 10 wild pigs, representing morphologically or geographically well-defined species and subspecies of the genus Sus from insular and mainland Southeast Asia, and one African common warthog.ResultsOur data highlight the importance of past cyclical climatic fluctuations in facilitating the dispersal and isolation of populations, thus leading to the diversification of suids in one of the most species-rich regions of the world. Moreover, admixture analyses revealed extensive, intra- and inter-specific gene-flow that explains previous conflicting results obtained from a limited number of loci. We show that these multiple episodes of gene-flow resulted from both natural and human-mediated dispersal.ConclusionsOur results demonstrate the importance of past climatic fluctuations and human mediated translocations in driving and complicating the process of speciation in island Southeast Asia. This case study demonstrates that genomics is a powerful tool to decipher the evolutionary history of a genus, and reveals the complexity of the process of speciation.


BMC Genomics | 2013

Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication.

Yogesh Paudel; Ole Madsen; Hendrik-Jan Megens; Laurent A. F. Frantz; Mirte Bosse; J.W.M. Bastiaansen; R.P.M.A. Crooijmans; M.A.M. Groenen

BackgroundCopy number variable regions (CNVRs) can result in drastic phenotypic differences and may therefore be subject to selection during domestication. Studying copy number variation in relation to domestication is highly relevant in pigs because of their very rich natural and domestication history that resulted in many different phenotypes. To investigate the evolutionary dynamic of CNVRs, we applied read depth method on next generation sequence data from 16 individuals, comprising wild boars and domestic pigs from Europe and Asia.ResultsWe identified 3,118 CNVRs with an average size of 13 kilobases comprising a total of 39.2 megabases of the pig genome and 545 overlapping genes. Functional analyses revealed that CNVRs are enriched with genes related to sensory perception, neurological process and response to stimulus, suggesting their contribution to adaptation in the wild and behavioral changes during domestication. Variations of copy number (CN) of antimicrobial related genes suggest an ongoing process of evolution of these genes to combat food-borne pathogens. Likewise, some genes related to the omnivorous lifestyle of pigs, like genes involved in detoxification, were observed to be CN variable. A small portion of CNVRs was unique to domestic pigs and may have been selected during domestication. The majority of CNVRs, however, is shared between wild and domesticated individuals, indicating that domestication had minor effect on the overall diversity of CNVRs. Also, the excess of CNVRs in non-genic regions implies that a major part of these variations is likely to be (nearly) neutral. Comparison between different populations showed that larger populations have more CNVRs, highlighting that CNVRs are, like other genetic variation such as SNPs and microsatellites, reflecting demographic history rather than phenotypic diversity.ConclusionCNVRs in pigs are enriched for genes related to sensory perception, neurological process, and response to stimulus. The majority of CNVRs ascertained in domestic pigs are also variable in wild boars, suggesting that the domestication of the pig did not result in a change in CNVRs in domesticated pigs. The majority of variable regions were found to reflect demographic patterns rather than phenotypic.


Nature Communications | 2014

Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression

Mirte Bosse; Hendrik-Jan Megens; Laurent A. F. Frantz; Ole Madsen; Greger Larson; Yogesh Paudel; N. Duijvesteijn; B. Harlizius; Yanick Hagemeijer; R.P.M.A. Crooijmans; M.A.M. Groenen

The independent domestication of local wild boar populations in Asia and Europe about 10,000 years ago led to distinct European and Asian pig breeds, each with very different phenotypic characteristics. During the Industrial Revolution, Chinese breeds were imported to Europe to improve commercial traits in European breeds. Here we demonstrate the presence of introgressed Asian haplotypes in European domestic pigs and selection signatures on some loci in these regions, using whole genome sequence data. The introgression signatures are widespread and the Asian haplotypes are rarely fixed. The Asian introgressed haplotypes are associated with regions harbouring genes involved in meat quality, development and fertility. We identify Asian-derived non-synonymous mutations in the AHR gene that associate with increased litter size in multiple European commercial lines. These findings demonstrate that increased fertility was an important breeding goal for early nineteenth century pig farmers, and that Asian variants of genes related to this trait were preferentially selected during the development of modern European pig breeds.


Genetics | 2014

Neandertal Admixture in Eurasia Confirmed by Maximum Likelihood Analysis of Three Genomes

Konrad Lohse; Laurent A. F. Frantz

Although there has been much interest in estimating histories of divergence and admixture from genomic data, it has proved difficult to distinguish recent admixture from long-term structure in the ancestral population. Thus, recent genome-wide analyses based on summary statistics have sparked controversy about the possibility of interbreeding between Neandertals and modern humans in Eurasia. Here we derive the probability of full mutational configurations in nonrecombining sequence blocks under both admixture and ancestral structure scenarios. Dividing the genome into short blocks gives an efficient way to compute maximum-likelihood estimates of parameters. We apply this likelihood scheme to triplets of human and Neandertal genomes and compare the relative support for a model of admixture from Neandertals into Eurasian populations after their expansion out of Africa against a history of persistent structure in their common ancestral population in Africa. Our analysis allows us to conclusively reject a model of ancestral structure in Africa and instead reveals strong support for Neandertal admixture in Eurasia at a higher rate (3.4−7.3%) than suggested previously. Using analysis and simulations we show that our inference is more powerful than previous summary statistics and robust to realistic levels of recombination.


Molecular Ecology | 2014

Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent Sus scrofa populations

Mirte Bosse; Hendrik-Jan Megens; Ole Madsen; Laurent A. F. Frantz; Yogesh Paudel; R.P.M.A. Crooijmans; M.A.M. Groenen

The merging of populations after an extended period of isolation and divergence is a common phenomenon, in natural settings as well as due to human interference. Individuals with such hybrid origins contain genomes that essentially form a mosaic of different histories and demographies. Pigs are an excellent model species to study hybridization because European and Asian wild boars diverged ~1.2 Mya, and pigs were domesticated independently in Europe and Asia. During the Industrial Revolution in England, pigs were imported from China to improve the local pigs. This study utilizes the latest genomics tools to identify the origin of haplotypes in European domesticated pigs that are descendant from Asian and European populations. Our results reveal fine‐scale haplotype structure representing different ancient demographic events, as well as a mosaic composition of those distinct histories due to recently introgressed haplotypes in the pig genome. As a consequence, nucleotide diversity in the genome of European domesticated pigs is higher when at least one haplotype of Asian origin is present, and haplotype length correlates negatively with recombination frequency and nucleotide diversity. Another consequence is that the inference of past effective population size is influenced by the background of the haplotypes in an individual, but we demonstrate that by careful sorting based on the origin of haplotypes, both distinct demographic histories can be reconstructed. Future detailed mapping of the genomic distribution of variation will enable a targeted approach to increase genetic diversity of captive and wild populations, thus facilitating conservation efforts in the near future.


BMC Genomics | 2015

Copy number variation in the speciation of pigs: a possible prominent role for olfactory receptors

Yogesh Paudel; Ole Madsen; Hendrik-Jan Megens; Laurent A. F. Frantz; Mirte Bosse; R.P.M.A. Crooijmans; M.A.M. Groenen

BackgroundUnraveling the genetic mechanisms associated with reduced gene flow between genetically differentiated populations is key to understand speciation. Different types of structural variations (SVs) have been found as a source of genetic diversity in a wide range of species. Previous studies provided detailed knowledge on the potential evolutionary role of SVs, especially copy number variations (CNVs), between well diverged species of e.g. primates. However, our understanding of their significance during ongoing speciation processes is limited due to the lack of CNV data from closely related species. The genus Sus (pig and its close relatives) which started to diverge ~4 Mya presents an excellent model for studying the role of CNVs during ongoing speciation.ResultsIn this study, we identified 1408 CNV regions (CNVRs) across the genus Sus. These CNVRs encompass 624 genes and were found to evolve ~2.5 times faster than single nucleotide polymorphisms (SNPs). The majority of these copy number variable genes are olfactory receptors (ORs) known to play a prominent role in food foraging and mate recognition in Sus. Phylogenetic analyses, including novel Bayesian analysis, based on CNVRs that overlap ORs retain the well-accepted topology of the genus Sus whereas CNVRs overlapping genes other than ORs show evidence for random drift and/or admixture.ConclusionWe hypothesize that inter-specific variation in copy number of ORs provided the means for rapid adaptation to different environments during the diversification of the genus Sus in the Pliocene. Furthermore, these regions might have acted as barriers preventing massive gene flow between these species during the multiple hybridization events that took place later in the Pleistocene suggesting a possible prominent role of ORs in the ongoing Sus speciation.

Collaboration


Dive into the Laurent A. F. Frantz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.A.M. Groenen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ole Madsen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

R.P.M.A. Crooijmans

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Mirte Bosse

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Hendrik-Jan Megens

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Yogesh Paudel

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Konrad Lohse

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge