Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Abel is active.

Publication


Featured researches published by Laurent Abel.


Science | 2011

Chronic Mucocutaneous Candidiasis in Humans with Inborn Errors of Interleukin-17 Immunity

Anne Puel; Sophie Cypowyj; Jacinta Bustamante; Jill F. Wright; Luyan Liu; Hye Kyung Lim; Mélanie Migaud; Laura Israel; Maya Chrabieh; Matthew Gumbleton; Antoine Toulon; C. Bodemer; Jamila El-Baghdadi; Matthew J. Whitters; Theresa Paradis; Jonathan Brooks; Mary Collins; Neil M. Wolfman; Saleh Al-Muhsen; Miguel Galicchio; Laurent Abel; Capucine Picard; Jean-Laurent Casanova

Chronic yeast infections in the absence of other infections result from genetic deficiencies in proinflammatory host responses. Chronic mucocutaneous candidiasis disease (CMCD) is characterized by recurrent or persistent infections of the skin, nails, and oral and genital mucosae caused by Candida albicans and, to a lesser extent, Staphylococcus aureus, in patients with no other infectious or autoimmune manifestations. We report two genetic etiologies of CMCD: autosomal recessive deficiency in the cytokine receptor, interleukin-17 receptor A (IL-17RA), and autosomal dominant deficiency of the cytokine interleukin-17F (IL-17F). IL-17RA deficiency is complete, abolishing cellular responses to IL-17A and IL-17F homo- and heterodimers. By contrast, IL-17F deficiency is partial, with mutant IL-17F–containing homo- and heterodimers displaying impaired, but not abolished, activity. These experiments of nature indicate that human IL-17A and IL-17F are essential for mucocutaneous immunity against C. albicans, but otherwise largely redundant.


Journal of Experimental Medicine | 2011

Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis

Luyan Liu; Satoshi Okada; Xiao Fei Kong; Alexandra Y. Kreins; Sophie Cypowyj; Avinash Abhyankar; Julie Toubiana; Yuval Itan; Patrick Nitschke; Cécile Masson; Beáta Tóth; Jérome Flatot; Mélanie Migaud; Maya Chrabieh; Tatiana Kochetkov; Alexandre Bolze; Alessandro Borghesi; Antoine Toulon; Julia Hiller; Stefanie Eyerich; Kilian Eyerich; Vera Gulácsy; Ludmyla Chernyshova; Viktor Chernyshov; Anastasia Bondarenko; Rosa María Cortés Grimaldo; Lizbeth Blancas-Galicia; Ileana Maria Madrigal Beas; Joachim Roesler; Klaus Magdorf

Whole-exome sequencing reveals activating STAT1 mutations in some patients with autosomal dominant chronic mucocutaneous candidiasis disease.


Nature | 2004

Susceptibility to leprosy is associated with PARK2 and PACRG

Marcelo Távora Mira; Alexandre Alcaïs; Nguyen Van Thuc; Milton Ozório Moraes; Celestino Di Flumeri; Vu Hong Thai; Mai Chi Phuong; Nguyen Thu Huong; Nguyen Ngoc Ba; Pham Xuan Khoa; Euzenir Nunes Sarno; Andrea Alter; Alexandre Montpetit; Maria E. Moraes; J.R. Moraes; Carole Doré; Caroline J. Gallant; Pierre Lepage; Andrei Verner; Esther van de Vosse; Thomas J. Hudson; Laurent Abel; Erwin Schurr

Leprosy is caused by Mycobacterium leprae and affects about 700,000 individuals each year. It has long been thought that leprosy has a strong genetic component, and recently we mapped a leprosy susceptibility locus to chromosome 6 region q25–q26 (ref. 3). Here we investigate this region further by using a systematic association scan of the chromosomal interval most likely to harbour this leprosy susceptibility locus. In 197 Vietnamese families we found a significant association between leprosy and 17 markers located in a block of approx. 80 kilobases overlapping the 5′ regulatory region shared by the Parkinsons disease gene PARK2 and the co-regulated gene PACRG. Possession of as few as two of the 17 risk alleles was highly predictive of leprosy. This was confirmed in a sample of 975 unrelated leprosy cases and controls from Brazil in whom the same alleles were strongly associated with leprosy. Variants in the regulatory region shared by PARK2 and PACRG therefore act as common risk factors for leprosy.


The New England Journal of Medicine | 2011

IRF8 Mutations and Human Dendritic-Cell Immunodeficiency

Sophie Hambleton; Sandra Salem; Jacinta Bustamante; Venetia Bigley; Stéphanie Boisson-Dupuis; Joana Azevedo; Anny Fortin; Muzlifah Haniffa; Lourdes Ceron-Gutierrez; Chris M. Bacon; Geetha Menon; Céline Trouillet; David McDonald; Peter Carey; Florent Ginhoux; Laia Alsina; Timothy Zumwalt; Xiao-Fei Kong; Dinakantha Kumararatne; Karina Butler; Marjorie Hubeau; Jacqueline Feinberg; Saleh Al-Muhsen; Andrew J. Cant; Laurent Abel; Damien Chaussabel; Rainer Doffinger; Eduardo Talesnik; Anete Sevciovic Grumach; Alberto José da Silva Duarte

BACKGROUND The genetic analysis of human primary immunodeficiencies has defined the contribution of specific cell populations and molecular pathways in the host defense against infection. Disseminated infection caused by bacille Calmette-Guérin (BCG) vaccines is an early manifestation of primary immunodeficiencies, such as severe combined immunodeficiency. In many affected persons, the cause of disseminated BCG disease is unexplained. METHODS We evaluated an infant presenting with features of severe immunodeficiency, including early-onset disseminated BCG disease, who required hematopoietic stem-cell transplantation. We also studied two otherwise healthy subjects with a history of disseminated but curable BCG disease in childhood. We characterized the monocyte and dendritic-cell compartments in these three subjects and sequenced candidate genes in which mutations could plausibly confer susceptibility to BCG disease. RESULTS We detected two distinct disease-causing mutations affecting interferon regulatory factor 8 (IRF8). Both K108E and T80A mutations impair IRF8 transcriptional activity by disrupting the interaction between IRF8 and DNA. The K108E variant was associated with an autosomal recessive severe immunodeficiency with a complete lack of circulating monocytes and dendritic cells. The T80A variant was associated with an autosomal dominant, milder immunodeficiency and a selective depletion of CD11c+CD1c+ circulating dendritic cells. CONCLUSIONS These findings define a class of human primary immunodeficiencies that affect the differentiation of mononuclear phagocytes. They also show that human IRF8 is critical for the development of monocytes and dendritic cells and for antimycobacterial immunity. (Funded by the Medical Research Council and others.).


Journal of Experimental Medicine | 2008

Mutations in STAT3 and IL12RB1 impair the development of human IL-17–producing T cells

Ludovic de Beaucoudrey; Anne Puel; Aurélie Cobat; Pegah Ghandil; Maya Chrabieh; Jacqueline Feinberg; Horst von Bernuth; Arina Samarina; Lucile Jannière; Claire Fieschi; Jean-Louis Stephan; Catherine Boileau; Stanislas Lyonnet; Guillaume Jondeau; Valérie Cormier-Daire; Martine Le Merrer; Cyrille Hoarau; Yvon Lebranchu; Olivier Lortholary; Marie-Olivia Chandesris; François Tron; Eleonora Gambineri; Lucia Bianchi; Carlos Rodríguez-Gallego; Simona Eva Zitnik; Júlia Vasconcelos; Margarida Guedes; Artur Bonito Vitor; László Maródi; Helen Chapel

The cytokines controlling the development of human interleukin (IL) 17–producing T helper cells in vitro have been difficult to identify. We addressed the question of the development of human IL-17–producing T helper cells in vivo by quantifying the production and secretion of IL-17 by fresh T cells ex vivo, and by T cell blasts expanded in vitro from patients with particular genetic traits affecting transforming growth factor (TGF) β, IL-1, IL-6, or IL-23 responses. Activating mutations in TGFB1, TGFBR1, and TGFBR2 (Camurati-Engelmann disease and Marfan-like syndromes) and loss-of-function mutations in IRAK4 and MYD88 (Mendelian predisposition to pyogenic bacterial infections) had no detectable impact. In contrast, dominant-negative mutations in STAT3 (autosomal-dominant hyperimmunoglobulin E syndrome) and, to a lesser extent, null mutations in IL12B and IL12RB1 (Mendelian susceptibility to mycobacterial diseases) impaired the development of IL-17–producing T cells. These data suggest that IL-12Rβ1– and STAT-3–dependent signals play a key role in the differentiation and/or expansion of human IL-17–producing T cell populations in vivo.


Journal of Experimental Medicine | 2003

Low Penetrance, Broad Resistance, and Favorable Outcome of Interleukin 12 Receptor β1 Deficiency Medical and Immunological Implications

Claire Fieschi; Stéphanie Dupuis; Emilie Catherinot; Jacqueline Feinberg; Jacinta Bustamante; Adrien Breiman; Frédéric Altare; Richard Baretto; Françoise Le Deist; Samer Kayal; Hartmut Koch; Darko Richter; Martin Brezina; Guzide Aksu; Phil Wood; Suliman Al-Jumaah; Miquel Raspall; Alberto José da Silva Duarte; David Tuerlinckx; Jean-Louis Virelizier; Alain Fischer; Andrea M. Enright; Jutta Bernhöft; Aileen M. Cleary; Christiane Vermylen; Carlos Rodríguez-Gallego; Graham Davies; Renate Blütters-Sawatzki; Claire-Anne Siegrist; Mohammad S. Ehlayel

The clinical phenotype of interleukin 12 receptor β1 chain (IL-12Rβ1) deficiency and the function of human IL-12 in host defense remain largely unknown, due to the small number of patients reported. We now report 41 patients with complete IL-12Rβ1 deficiency from 17 countries. The only opportunistic infections observed, in 34 patients, were of childhood onset and caused by weakly virulent Salmonella or Mycobacteria (Bacille Calmette-Guérin -BCG- and environmental Mycobacteria). Three patients had clinical tuberculosis, one of whom also had salmonellosis. Unlike salmonellosis, mycobacterial infections did not recur. BCG inoculation and BCG disease were both effective against subsequent environmental mycobacteriosis, but not against salmonellosis. Excluding the probands, seven of the 12 affected siblings have remained free of case-definition opportunistic infection. Finally, only five deaths occurred in childhood, and the remaining 36 patients are alive and well. Thus, a diagnosis of IL-12Rβ1 deficiency should be considered in children with opportunistic mycobacteriosis or salmonellosis; healthy siblings of probands and selected cases of tuberculosis should also be investigated. The overall prognosis is good due to broad resistance to infection and the low penetrance and favorable outcome of infections. Unexpectedly, human IL-12 is redundant in protective immunity against most microorganisms other than Mycobacteria and Salmonella. Moreover, IL-12 is redundant for primary immunity to Mycobacteria and Salmonella in many individuals and for secondary immunity to Mycobacteria but not to Salmonella in most.


The Journal of Infectious Diseases | 1998

Susceptibility to Leprosy Is Linked to the Human NRAMP1 Gene

Laurent Abel; Fabio Sanchez; Jean Oberti; Nguyen Van Thuc; Le Van Hoa; Vu Dinh Lap; Emil Skamene; Philippe Lagrange; Erwin Schurr

Leprosy is a debilitating infectious disease of human skin and nerves. Genetic factors of the host play an important role in the manifestation of disease susceptibility. The human NRAMP1 gene is a leprosy susceptibility candidate locus since its murine homologue Nramp1 (formerly Lsh/Ity/Bcg) controls innate resistance to Mycobacterium lepraemurium. In this study, 168 members of 20 multiplex leprosy families were genotyped for NRAMP1 alleles and 4 closely linked polymorphic markers. Highly informative haplotypes overlapping the NRAMP1 gene were constructed, and the haplotype segregation into leprosy-affected offspring was analyzed. It was observed that the segregation of NRAMP1 haplotypes into affected siblings was significantly nonrandom. This finding is consistent with the hypothesis that NRAMP1 itself is a leprosy susceptibility locus.


Science | 2012

Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency.

Dusan Bogunovic; Minji Byun; Larissa A. Durfee; Avinash Abhyankar; Ozden Sanal; Davood Mansouri; Sandra Salem; Irena Radovanovic; Audrey V. Grant; Parisa Adimi; Nahal Mansouri; Satoshi Okada; Vanessa L. Bryant; Xiao Fei Kong; Alexandra Y. Kreins; Marcela Moncada Velez; Bertrand Boisson; Soheila Khalilzadeh; U. Ozcelik; Ilad Alavi Darazam; John W. Schoggins; Charles M. Rice; Saleh Al-Muhsen; Marcel A. Behr; Guillaume Vogt; Anne Puel; Jacinta Bustamante; Philippe Gros; Jon M. Huibregtse; Laurent Abel

Tuberculosis Vaccine Conundrum Some children experience severe clinical disease when they are vaccinated against tuberculosis, an attenuated live vaccine that is normally innocuous in humans. Several germline mutations have been identified that account for this susceptibility, and now Bogunovic et al. (p. 1684, published online 2 August) add another to the list—ISG15. Uncovering this mutation, which is inherited in an autosomal recessive manner, was a surprise because studies with mice deficient in ISG15 showed enhanced susceptibility to some viral, but not bacterial, infections. Nevertheless, patients lacking ISG15 were not able to produce adequate amounts of interferon-γ, a cytokine critical for clearance of the bacteria. A mutation that accounts for adverse reactions to the Bacille Calmette-Guérin vaccine against tuberculosis is identified. ISG15 is an interferon (IFN)-α/β–inducible, ubiquitin-like intracellular protein. Its conjugation to various proteins (ISGylation) contributes to antiviral immunity in mice. Here, we describe human patients with inherited ISG15 deficiency and mycobacterial, but not viral, diseases. The lack of intracellular ISG15 production and protein ISGylation was not associated with cellular susceptibility to any viruses that we tested, consistent with the lack of viral diseases in these patients. By contrast, the lack of mycobacterium-induced ISG15 secretion by leukocytes—granulocyte, in particular—reduced the production of IFN-γ by lymphocytes, including natural killer cells, probably accounting for the enhanced susceptibility to mycobacterial disease. This experiment of nature shows that human ISGylation is largely redundant for antiviral immunity, but that ISG15 plays an essential role as an IFN-γ–inducing secreted molecule for optimal antimycobacterial immunity.


Medicine | 2010

Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency

Capucine Picard; Horst von Bernuth; Pegah Ghandil; Maya Chrabieh; Ofer Levy; Peter D. Arkwright; Douglas R. McDonald; Raif S. Geha; Hidetoshi Takada; Jens Krause; C. Buddy Creech; Cheng Lung Ku; Stephan Ehl; László Maródi; Saleh Al-Muhsen; Sami Al-Hajjar; Abdulaziz Al-Ghonaium; Noorbibi K. Day-Good; Steven M. Holland; John I. Gallin; Helen Chapel; David P. Speert; Carlos Rodríguez-Gallego; Elena Colino; Ben Zion Garty; Chaim Roifman; Toshiro Hara; Hideto Yoshikawa; Shigeaki Nonoyama; Joseph B. Domachowske

Autosomal recessive interleukin-1 receptor-associated kinase (IRAK)-4 and myeloid differentiation factor (MyD)88 deficiencies impair Toll-like receptor (TLR)- and interleukin-1 receptor-mediated immunity. We documented the clinical features and outcome of 48 patients with IRAK-4 deficiency and 12 patients with MyD88 deficiency, from 37 kindreds in 15 countries. The clinical features of IRAK-4 and MyD88 deficiency were indistinguishable. There were no severe viral, parasitic, and fungal diseases, and the range of bacterial infections was narrow. Noninvasive bacterial infections occurred in 52 patients, with a high incidence of infections of the upper respiratory tract and the skin, mostly caused by Pseudomonas aeruginosa and Staphylococcus aureus, respectively. The leading threat was invasive pneumococcal disease, documented in 41 patients (68%) and causing 72 documented invasive infections (52.2%). P. aeruginosa and Staph. aureus documented invasive infections also occurred (16.7% and 16%, respectively, in 13 and 13 patients, respectively). Systemic signs of inflammation were usually weak or delayed. The first invasive infection occurred before the age of 2 years in 53 (88.3%) and in the neonatal period in 19 (32.7%) patients. Multiple or recurrent invasive infections were observed in most survivors (n = 36/50, 72%). Clinical outcome was poor, with 24 deaths, in 10 cases during the first invasive episode and in 16 cases of invasive pneumococcal disease. However, no death and invasive infectious disease were reported in patients after the age of 8 years and 14 years, respectively. Antibiotic prophylaxis (n = 34), antipneumococcal vaccination (n = 31), and/or IgG infusion (n = 19), when instituted, had a beneficial impact on patients until the teenage years, with no seemingly detectable impact thereafter. IRAK-4 and MyD88 deficiencies predispose patients to recurrent life-threatening bacterial diseases, such as invasive pneumococcal disease in particular, in infancy and early childhood, with weak signs of inflammation. Patients and families should be informed of the risk of developing life-threatening infections; empiric antibacterial treatment and immediate medical consultation are strongly recommended in cases of suspected infection or moderate fever. Prophylactic measures in childhood are beneficial, until spontaneous improvement occurs in adolescence. Abbreviations: CRP = C-reactive protein, ELISA = enzyme-linked immunosorbent assay, IFN = interferon, IKBA = I&kgr;B&agr;, IL = interleukin, IL-1R = interleukin-1 receptor, InvBD = invasive bacterial disease, IRAK = interleukin-1 receptor-associated kinase, MyD = myeloid differentiation factor, NEMO = nuclear factor-kappaB essential modulator, NInvBD = noninvasive bacterial disease, TIR = Toll/IL-1R, TLR = Toll-like receptor, TNF = tumor necrosis factor.


Annual Review of Immunology | 2011

Human TLRs and IL-1Rs in Host Defense: Natural Insights from Evolutionary, Epidemiological, and Clinical Genetics

Jean-Laurent Casanova; Laurent Abel; Lluis Quintana-Murci

Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs) have TIR intracellular domains that engage two main signaling pathways, via the TIR-containing adaptors MyD88 (which is not used by TLR3) and TRIF (which is used only by TLR3 and TLR4). Extensive studies in inbred mice in various experimental settings have attributed key roles in immunity to TLR- and IL-1R-mediated responses, but what contribution do human TLRs and IL-1Rs actually make to host defense in the natural setting? Evolutionary genetic studies have shown that human intracellular TLRs have evolved under stronger purifying selection than surface-expressed TLRs, for which the frequency of missense and nonsense alleles is high in the general population. Epidemiological genetic studies have yet to provide convincing evidence of a major contribution of common variants of human TLRs, IL-1Rs, or their adaptors to host defense. Clinical genetic studies have revealed that rare mutations affecting the TLR3-TRIF pathway underlie herpes simplex virus encephalitis, whereas mutations in the TIR-MyD88 pathway underlie pyogenic bacterial diseases in childhood. A careful reconsideration of the contributions of TLRs and IL-1Rs to host defense in natura is required.

Collaboration


Dive into the Laurent Abel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre Alcaïs

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Capucine Picard

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erwin Schurr

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Aurélie Cobat

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuval Itan

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Anne Puel

Rockefeller University

View shared research outputs
Researchain Logo
Decentralizing Knowledge