Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Farinelli is active.

Publication


Featured researches published by Laurent Farinelli.


Genome Research | 2008

De novo bacterial genome sequencing: Millions of very short reads assembled on a desktop computer

David Hernandez; Patrice Francois; Laurent Farinelli; Magne Østerås; Jacques Schrenzel

Novel high-throughput DNA sequencing technologies allow researchers to characterize a bacterial genome during a single experiment and at a moderate cost. However, the increase in sequencing throughput that is allowed by using such platforms is obtained at the expense of individual sequence read length, which must be assembled into longer contigs to be exploitable. This study focuses on the Illumina sequencing platform that produces millions of very short sequences that are 35 bases in length. We propose a de novo assembler software that is dedicated to process such data. Based on a classical overlap graph representation and on the detection of potentially spurious reads, our software generates a set of accurate contigs of several kilobases that cover most of the bacterial genome. The assembly results were validated by comparing data sets that were obtained experimentally for Staphylococcus aureus strain MW2 and Helicobacter acinonychis strain Sheeba with that of their published genomes acquired by conventional sequencing of 1.5- to 3.0-kb fragments. We also provide indications that the broad coverage achieved by high-throughput sequencing might allow for the detection of clonal polymorphisms in the set of DNA molecules being sequenced.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The genome of the fire ant Solenopsis invicta

Yannick Wurm; John L. Wang; Miguel Corona; Sanne Nygaard; Brendan G. Hunt; Krista K. Ingram; Mingkwan Nipitwattanaphon; Dietrich Gotzek; Michiel B. Dijkstra; Jan Oettler; Fabien Comtesse; Cheng-Jen Shih; Wen-Jer Wu; Chin-Cheng Yang; Jérôme Thomas; Emmanuel Beaudoing; Sylvain Pradervand; Volker Flegel; Erin D. Cook; Roberto Fabbretti; Heinz Stockinger; Li Long; William G. Farmerie; Jane Oakey; Jacobus J. Boomsma; Pekka Pamilo; Soojin V. Yi; Jürgen Heinze; Michael A. D. Goodisman; Laurent Farinelli

Ants have evolved very complex societies and are key ecosystem members. Some ants, such as the fire ant Solenopsis invicta, are also major pests. Here, we present a draft genome of S. invicta, assembled from Roche 454 and Illumina sequencing reads obtained from a focal haploid male and his brothers. We used comparative genomic methods to obtain insight into the unique features of the S. invicta genome. For example, we found that this genome harbors four adjacent copies of vitellogenin. A phylogenetic analysis revealed that an ancestral vitellogenin gene first underwent a duplication that was followed by possibly independent duplications of each of the daughter vitellogenins. The vitellogenin genes have undergone subfunctionalization with queen- and worker-specific expression, possibly reflecting differential selection acting on the queen and worker castes. Additionally, we identified more than 400 putative olfactory receptors of which at least 297 are intact. This represents the largest repertoire reported so far in insects. S. invicta also harbors an expansion of a specific family of lipid-processing genes, two putative orthologs to the transformer/feminizer sex differentiation gene, a functional DNA methylation system, and a single putative telomerase ortholog. EST data indicate that this S. invicta telomerase ortholog has at least four spliceforms that differ in their use of two sets of mutually exclusive exons. Some of these and other unique aspects of the fire ant genome are likely linked to the complex social behavior of this species.


Journal of Microbiological Methods | 2009

Metagenomic study of the oral microbiota by Illumina high-throughput sequencing

Vladimir Lazarevic; Katrine Whiteson; Susan M. Huse; David Hernandez; Laurent Farinelli; Magne Østerås; Jacques Schrenzel; Patrice Francois

To date, metagenomic studies have relied on the utilization and analysis of reads obtained using 454 pyrosequencing to replace conventional Sanger sequencing. After extensively scanning the 16S ribosomal RNA (rRNA) gene, we identified the V5 hypervariable region as a short region providing reliable identification of bacterial sequences available in public databases such as the Human Oral Microbiome Database. We amplified samples from the oral cavity of three healthy individuals using primers covering an approximately 82-base segment of the V5 loop, and sequenced using the Illumina technology in a single orientation. We identified 135 genera or higher taxonomic ranks from the resulting 1,373,824 sequences. While the abundances of the most common phyla (Firmicutes, Proteobacteria, Actinobacteria, Fusobacteria and TM7) are largely comparable to previous studies, Bacteroidetes were less present. Potential sources for this difference include classification bias in this region of the 16S rRNA gene, human sample variation, sample preparation and primer bias. Using an Illumina sequencing approach, we achieved a much greater depth of coverage than previous oral microbiota studies, allowing us to identify several taxa not yet discovered in these types of samples, and to assess that at least 30,000 additional reads would be required to identify only one additional phylotype. The evolution of high-throughput sequencing technologies, and their subsequent improvements in read length enable the utilization of different platforms for studying communities of complex flora. Access to large amounts of data is already leading to a better representation of sample diversity at a reasonable cost.


Nature Protocols | 2010

Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP)

Kerstin Kaufmann; Jose M. Muiño; Magne Østerås; Laurent Farinelli; Paweł Krajewski; Gerco C. Angenent

Chromatin immunoprecipitation (ChIP) is a powerful technique to study interactions between transcription factors (TFs) and DNA in vivo. For genome-wide de novo discovery of TF-binding sites, the DNA that is obtained in ChIP experiments needs to be processed for sequence identification. The sequences can be identified by direct sequencing (ChIP-SEQ) or hybridization to microarrays (ChIP-CHIP). Given the small amounts of DNA that are usually obtained in ChIP experiments, successful and reproducible sample processing is challenging. Here we provide a detailed procedure for ChIP of plant TFs, as well as protocols for sample preparation for ChIP-SEQ and for ChIP-CHIP. Our ChIP procedure is optimized for high signal-to-noise ratio starting with tissue fixation, followed by nuclei isolation, immunoprecipitation, DNA amplification and purification. We also provide a guide for primary data analysis of ChIP-SEQ data. The complete protocol for ChIP-SEQ/ChIP-CHIP sample preparation starting from plant harvest takes ∼7 d.


PLOS Pathogens | 2010

Spliced Leader Trapping Reveals Widespread Alternative Splicing Patterns in the Highly Dynamic Transcriptome of Trypanosoma brucei

Daniel Nilsson; Kapila Gunasekera; Jan Mani; Magne Østerås; Laurent Farinelli; Loïc Baerlocher; Isabel Roditi; Torsten Ochsenreiter

Trans-splicing of leader sequences onto the 5′ends of mRNAs is a widespread phenomenon in protozoa, nematodes and some chordates. Using parallel sequencing we have developed a method to simultaneously map 5′splice sites and analyze the corresponding gene expression profile, that we term spliced leader trapping (SLT). The method can be applied to any organism with a sequenced genome and trans-splicing of a conserved leader sequence. We analyzed the expression profiles and splicing patterns of bloodstream and insect forms of the parasite Trypanosoma brucei. We detected the 5′ splice sites of 85% of the annotated protein-coding genes and, contrary to previous reports, found up to 40% of transcripts to be differentially expressed. Furthermore, we discovered more than 2500 alternative splicing events, many of which appear to be stage-regulated. Based on our findings we hypothesize that alternatively spliced transcripts present a new means of regulating gene expression and could potentially contribute to protein diversity in the parasite. The entire dataset can be accessed online at TriTrypDB or through: http://splicer.unibe.ch/.


Genome Research | 2010

Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes

Chun-Long Chen; Aurélien Rappailles; Lauranne Duquenne; Maxime Huvet; Guillaume Guilbaud; Laurent Farinelli; Benjamin Audit; Yves d'Aubenton-Carafa; Alain Arneodo; Olivier Hyrien; Claude Thermes

Neutral nucleotide substitutions occur at varying rates along genomes, and it remains a major issue to unravel the mechanisms that cause these variations and to analyze their evolutionary consequences. Here, we study the role of replication in the neutral substitution pattern. We obtained a high-resolution replication timing profile of the whole human genome by massively parallel sequencing of nascent BrdU-labeled replicating DNA. These data were compared to the neutral substitution rates along the human genome, obtained by aligning human and chimpanzee genomes using macaque and orangutan as outgroups. All substitution rates increase monotonously with replication timing even after controlling for local or regional nucleotide composition, crossover rate, distance to telomeres, and chromatin compaction. The increase in non-CpG substitution rates might result from several mechanisms including the increase in mutation-prone activities or the decrease in efficiency of DNA repair during the S phase. In contrast, the rate of C --> T transitions in CpG dinucleotides increases in later-replicating regions due to increasing DNA methylation level that reflects a negative correlation between timing and gene expression. Similar results are observed in the mouse, which indicates that replication timing is a main factor affecting nucleotide substitution dynamics at non-CpG sites and constitutes a major neutral process driving mammalian genome evolution.


Nature | 2014

Domains of genome-wide gene expression dysregulation in Down’s syndrome

A. Letourneau; Federico Santoni; Ximena Bonilla; M. Reza Sailani; David Gonzalez; Jop Kind; Claire Chevalier; Robert E. Thurman; Richard Sandstrom; Youssef Hibaoui; Marco Garieri; Konstantin Popadin; Emilie Falconnet; Maryline Gagnebin; Corinne Gehrig; Anne Vannier; Michel Guipponi; Laurent Farinelli; Daniel Robyr; Eugenia Migliavacca; Christelle Borel; Samuel Deutsch; Anis Feki; John A. Stamatoyannopoulos; Yann Herault; Bas van Steensel; Roderic Guigó

Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins’ fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down’s syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes.


Multiple Sclerosis Journal | 2012

Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease

Hervé Perron; Raphaëlle Germi; Corinne Bernard; Marta Garcia-Montojo; Cécile Deluen; Laurent Farinelli; Raphaël Faucard; Francisco Veas; Ilias Stefas; Babs O. Fabriek; Jack Van-Horssen; Paul Van-Der-Valk; Claire Gerdil; Roberta Mancuso; Marina Saresella; Mario Clerici; Sébastien Marcel; Alain Créange; Rosella Cavaretta; Domenico Caputo; Giannina Arru; Patrice Morand; Alois B. Lang; Stefano Sotgiu; Klemens Ruprecht; Peter Rieckmann; Pablo Villoslada; Michel Chofflon; José Boucraut; Jean Pelletier

Background: The envelope protein from multiple sclerosis (MS) associated retroviral element (MSRV), a member of the Human Endogenous Retroviral family ‘W’ (HERV-W), induces dysimmunity and inflammation. Objective: The objective of this study was to confirm and specify the association between HERV-W/MSRV envelope (Env) expression and MS. Methods: 103 MS, 199 healthy controls (HC) and controls with other neurological diseases (28), chronic infections (30) or autoimmunity (30) were analysed with an immunoassay detecting Env in serum. Env RNA or DNA copy numbers in peripheral blood mononuclear cells (PBMC) were determined by a quantitative polymerase chain reaction (PCR). Env was detected by immunohistology in the brains of patients with MS with three specific monoclonals. Results: Env antigen was detected in a serum of 73% of patients with MS with similar prevalence in all clinical forms, and not in chronic infection, systemic lupus, most other neurological diseases and healthy donors (p<0.01). Cases with chronic inflammatory demyelinating polyneuropathy (5/8) and rare HC (4/103) were positive. RNA expression in PBMC and DNA copy numbers were significantly elevated in patients with MS versus HC (p<0.001). In patients with MS, DNA copy numbers were significantly increased in chronic progressive MS (secondary progressive MS vs relapsing–remitting MS (RRMS) p<0.001; primary progressive MS vs RRMS –<0.02). Env protein was evidenced in macrophages within MS brain lesions with particular concentrations around vascular elements. Conclusion: The association between MS disease and the MSRV-type HERV-W element now appears quite strong, as evidenced ex-vivo from serum and PBMC with post-mortem confirmation in brain lesions. Chronic progressive MS, RRMS and clinically isolated syndrome show different ELISA (Enzyme-Linked Immunosorbent Assay) and/or PCR profiles suggestive of an increase with disease evolution, and amplicon sequencing confirms the association with particular HERV-W elements.


BMC Bioinformatics | 2008

Probabilistic base calling of Solexa sequencing data

Jacques Rougemont; Arnaud Amzallag; Christian Iseli; Laurent Farinelli; Ioannis Xenarios; Felix Naef

BackgroundSolexa/Illumina short-read ultra-high throughput DNA sequencing technology produces millions of short tags (up to 36 bases) by parallel sequencing-by-synthesis of DNA colonies. The processing and statistical analysis of such high-throughput data poses new challenges; currently a fair proportion of the tags are routinely discarded due to an inability to match them to a reference sequence, thereby reducing the effective throughput of the technology.ResultsWe propose a novel base calling algorithm using model-based clustering and probability theory to identify ambiguous bases and code them with IUPAC symbols. We also select optimal sub-tags using a score based on information content to remove uncertain bases towards the ends of the reads.ConclusionWe show that the method improves genome coverage and number of usable tags as compared with Solexas data processing pipeline by an average of 15%. An R package is provided which allows fast and accurate base calling of Solexas fluorescence intensity files and the production of informative diagnostic plots.


PLOS ONE | 2010

Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions.

Marie-Emilie Beaume; David Hernandez; Laurent Farinelli; Cécile Deluen; Patrick Linder; Christine Gaspin; Pascale Romby; Jacques Schrenzel; Patrice Francois

Background Staphylococcus aureus is a versatile bacterial opportunist responsible for a wide spectrum of infections. The severity of these infections is highly variable and depends on multiple parameters including the genome content of the bacterium as well as the condition of the infected host. Clinically and epidemiologically, S. aureus shows a particular capacity to survive and adapt to drastic environmental changes including the presence of numerous antimicrobial agents. Mechanisms triggering this adaptation remain largely unknown despite important research efforts. Most studies evaluating gene content have so far neglected to analyze the so-called intergenic regions as well as potential antisense RNA molecules. Principal Findings Using high-throughput sequencing technology, we performed an inventory of the whole transcriptome of S. aureus strain N315. In addition to the annotated transcription units, we identified more than 195 small transcribed regions, in the chromosome and the plasmid of S. aureus strain N315. The coding strand of each transcript was identified and structural analysis enabled classification of all discovered transcripts. RNA purified at four time-points during the growth phase of the bacterium allowed us to define the temporal expression of such transcripts. A selection of 26 transcripts of interest dispersed along the intergenic regions was assessed for expression changes in the presence of various stress conditions including pH, temperature, oxidative shocks and growth in a stringent medium. Most of these transcripts showed expression patterns specific for the defined stress conditions that we tested. Conclusions These RNA molecules potentially represent important effectors of S. aureus adaptation and more generally could support some of the epidemiological characteristics of the bacterium.

Collaboration


Dive into the Laurent Farinelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Iseli

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge