Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Gizon is active.

Publication


Featured researches published by Laurent Gizon.


The Astrophysical Journal | 2012

SEISMIC EVIDENCE FOR A RAPIDLY ROTATING CORE IN A LOWER-GIANT-BRANCH STAR OBSERVED WITH KEPLER

S. Deheuvels; R. A. García; W. J. Chaplin; Sarbani Basu; H. M. Antia; T. Appourchaux; O. Benomar; G. R. Davies; Y. Elsworth; Laurent Gizon; M. J. Goupil; Daniel Reese; C. Regulo; Jesper Schou; T. Stahn; Luca Casagrande; J. Christensen-Dalsgaard; Debra A. Fischer; S. Hekker; Hans Kjeldsen; S. Mathur; B. Mosser; Marc H. Pinsonneault; Jeff A. Valenti; Jessie L. Christiansen; Karen Kinemuchi; Fergal Mullally

Rotation is expected to have an important influence on the structure and the evolution of stars. However, the mechanisms of angular momentum transport in stars remain theoretically uncertain and very complex to take into account in stellar models. To achieve a better understanding of these processes, we desperately need observational constraints on the internal rotation of stars, which until very recently was restricted to the Sun. In this paper, we report the detection of mixed modes—i.e., modes that behave both as g modes in the core and as p modes in the envelope—in the spectrum of the early red giant KIC 7341231, which was observed during one year with the Kepler spacecraft. By performing an analysis of the oscillation spectrum of the star, we show that its non-radial modes are clearly split by stellar rotation and we are able to determine precisely the rotational splittings of 18 modes. We then find a stellar model that reproduces very well the observed atmospheric and seismic properties of the star. We use this model to perform inversions of the internal rotation profile of the star, which enables us to show that the core of the star is rotating at least five times faster than the envelope. This will shed new light on the processes of transport of angular momentum in stars. In particular, this result can be used to place constraints on the angular momentum coupling between the core and the envelope of early red giants, which could help us discriminate between the theories that have been proposed over the last few decades.


The Astrophysical Journal | 2003

Determining the inclination of the rotation axis of a Sun-like star

Laurent Gizon; S. K. Solanki

Asteroseismology provides us with the possibility of determining the angle, i, between the direction of the rotation axis of a pulsating Sun-like star and the line of sight. A knowledge of i is important not just for obtaining improved stellar parameters, but also in order to determine the true masses of extrasolar planets detected from the radial velocity shifts of their central stars. By means of Monte Carlo simulations, we estimate the precision of the measurement of i and other stellar parameters. We find that the inclination angle can be retrieved accurately when ie30 � for stars that rotate at least twice as fast as the Sun. Subject headings: planetary systems — stars: fundamental parameters — stars: oscillations — stars: rotation


Astrophysical Journal Supplement Series | 2013

Asteroseismic Fundamental Properties of Solar-type Stars Observed by the NASA Kepler Mission

W. J. Chaplin; Sarbani Basu; Daniel Huber; Aldo M. Serenelli; Luca Casagrande; V. Silva Aguirre; Warrick H. Ball; O. L. Creevey; Laurent Gizon; R. Handberg; C. Karoff; R. Lutz; J. P. Marques; A. Miglio; D. Stello; Marian Doru Suran; D. Pricopi; T. S. Metcalfe; M. J. P. F. G. Monteiro; J. Molenda-Żakowicz; T. Appourchaux; J. Christensen-Dalsgaard; Y. Elsworth; R. A. García; G. Houdek; Hans Kjeldsen; Alfio Bonanno; T. L. Campante; E. Corsaro; P. Gaulme

We use asteroseismic data obtained by the NASA Kepler mission to estimate the fundamental properties of more than 500 main-sequence and sub-giant stars. Data obtained during the first 10 months of Kepler science operations were used for this work, when these solar-type targets were observed for one month each in survey mode. Stellar properties have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic data. Homogeneous sets of effective temperatures, T eff, were available for the entire ensemble from complementary photometry; spectroscopic estimates of T eff and [Fe/H] were available from a homogeneous analysis of ground-based data on a subset of 87 stars. We adopt a grid-based analysis, coupling six pipeline codes to 11 stellar evolutionary grids. Through use of these different grid-pipeline combinations we allow implicitly for the impact on the results of stellar model dependencies from commonly used grids, and differences in adopted pipeline methodologies. By using just two global parameters as the seismic inputs we are able to perform a homogenous analysis of all solar-type stars in the asteroseismic cohort, including many targets for which it would not be possible to provide robust estimates of individual oscillation frequencies (due to a combination of low signal-to-noise ratio and short dataset lengths). The median final quoted uncertainties from consolidation of the grid-based analyses are for the full ensemble (spectroscopic subset) approximately 10.8% (5.4%) in mass, 4.4% (2.2%) in radius, 0.017 dex (0.010 dex) in log g, and 4.3% (2.8%) in mean density. Around 36% (57%) of the stars have final age uncertainties smaller than 1 Gyr. These ages will be useful for ensemble studies, but should be treated carefully on a star-by-star basis. Future analyses using individual oscillation frequencies will offer significant improvements on up to 150 stars, in particular for estimates of the ages, where having the individual frequency data is most important.


Astronomy and Astrophysics | 2014

Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants

S. Deheuvels; G. Doğan; M. J. Goupil; T. Appourchaux; O. Benomar; H. Bruntt; T. L. Campante; Luca Casagrande; T. Ceillier; G. R. Davies; P. De Cat; J. N. Fu; R. A. García; A. Lobel; B. Mosser; Daniel Reese; C. Regulo; Jesper Schou; T. Stahn; A. O. Thygesen; X. H. Yang; W. J. Chaplin; J. Christensen-Dalsgaard; P. Eggenberger; Laurent Gizon; S. Mathis; J. Molenda-Żakowicz; Marc H. Pinsonneault

Context. We still do not understand which physical mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the clear signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this question.Aims. Our aim is to probe the radial dependence of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts.Methods. We first extracted the rotational splittings and frequencies of the modes for six young Kepler red giants. We then performed a seismic modeling of these stars using the evolutionary codes Cesam2k and astec. By using the observed splittings and the rotational kernels of the optimal models, we inverted the internal rotation profiles of the six stars.Results. We obtain estimates of the core rotation rates for these stars, and upper limits to the rotation in their convective envelope. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, while their envelope spins down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found to be most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand.Conclusions. We characterized the differential rotation pattern of six young giants with a range of metallicities, and with both radiative and convective cores on the main sequence. This will bring observational constraints to the scenarios of angular momentum transport in stars. Moreover, if the existence of sharp gradients in the rotation profiles of young red giants is confirmed, it is expected to help in distinguishing between the physical processes that could transport angular momentum in the subgiant and red giant branches.


The Astrophysical Journal | 2002

TIME-DISTANCE HELIOSEISMOLOGY: THE FORWARD PROBLEM FOR RANDOM DISTRIBUTED SOURCES

Laurent Gizon; A. C. Birch

The forward problem of time-distance helioseismology is computing travel-time perturbations that result from perturbations to a solar model. We present a new and physically motivated general framework for calculations of the sensitivity of travel times to small local perturbations to solar properties, taking into account the fact that the sources of solar oscillations are spatially distributed. In addition to perturbations in sound speed and flows, this theory can also be applied to perturbations in the wave excitation and damping mechanisms. Our starting point is a description of the wave field excited by distributed random sources in the upper convection zone. We employ the first Born approximation to model scattering from local inhomogeneities. We use a clear and practical definition of travel-time perturbation, which allows a connection between observations and theory. In this framework, travel-time sensitivity kernels depend explicitly on the details of the measurement procedure. After developing the general theory, we consider the example of the sensitivity of surface gravity wave travel times to local perturbations in the wave excitation and damping rates. We derive explicit expressions for the two corresponding sensitivity kernels. We show that the simple single-source picture, employed in most time-distance analyses, does not reproduce all of the features seen in the distributed-source kernels developed in this paper.


Annual Review of Astronomy and Astrophysics | 2010

Local Helioseismology: Three-Dimensional Imaging of the Solar Interior

Laurent Gizon; Aaron C. Birch; H. C. Spruit

The Sun supports a rich spectrum of internal waves that are continuously excited by turbulent convection. The Global Oscillation Network Group (GONG) network and the SOHO/MDI (Solar and Heliospheric Observatory/Michelson Doppler Imager) space instrument provide an exceptional database of spatially resolved observations of solar oscillations, covering more than an entire sunspot cycle (11 years). Local helioseismology is a set of tools for probing the solar interior in three dimensions using measurements of wave travel times and local mode frequencies. Local helioseismology has discovered (a) near-surface vector flows associated with convection, (b) 250 m s−1 subsurface horizontal outflows around sunspots, (c) ∼50 m s−1 extended horizontal flows around active regions (converging near the surface and diverging below), (d) the effect of the Coriolis force on convective flows and active region flows, (e) the subsurface signature of the 15 m s−1 poleward meridional flow, (f) a ±5 m s−1 time-varying depth-depen...


The Astrophysical Journal | 2012

Asteroseismology of the solar analogs 16 Cyg A and B from Kepler observations

T. S. Metcalfe; W. J. Chaplin; T. Appourchaux; R. A. García; Sarbani Basu; I. M. Brandão; O. L. Creevey; S. Deheuvels; G. Doğan; P. Eggenberger; C. Karoff; A. Miglio; D. Stello; M. Yıldız; Z. Çelik; H. M. Antia; O. Benomar; R. Howe; C. Regulo; D. Salabert; Thorsten Stahn; Timothy R. Bedding; G. R. Davies; Y. Elsworth; Laurent Gizon; S. Hekker; S. Mathur; B. Mosser; Steve Bryson; Martin Still

The evolved solar-type stars 16 Cyg A and B have long been studied as solar analogs, yielding a glimpse into the future of our own Sun. The orbital period of the binary system is too long to provide meaningful dynamical constraints on the stellar properties, but asteroseismology can help because the stars are among the brightest in the Kepler field. We present an analysis of three months of nearly uninterrupted photometry of 16 Cyg A and B from the Kepler space telescope. We extract a total of 46 and 41 oscillation frequencies for the two components, respectively, including a clear detection of octupole (l = 3) modes in both stars. We derive the properties of each star independently using the Asteroseismic Modeling Portal, fitting the individual oscillation frequencies and other observational constraints simultaneously. We evaluate the systematic uncertainties from an ensemble of results generated by a variety of stellar evolution codes and fitting methods. The optimal models derived by fitting each component individually yield a common age (t = 6.8 ± 0.4 Gyr) and initial composition (Z i = 0.024 ± 0.002, Y i = 0.25 ± 0.01) within the uncertainties, as expected for the components of a binary system, bolstering our confidence in the reliability of asteroseismic techniques. The longer data sets that will ultimately become available will allow future studies of differential rotation, convection zone depths, and long-term changes due to stellar activity cycles.


The Astrophysical Journal | 2004

Time-Distance Helioseismology: Noise Estimation

Laurent Gizon; A. C. Birch

As in global helioseismology, the dominant source of noise in time-distance helioseismology measurements is realization noise due to the stochastic nature of the excitation mechanism of solar oscillations. Characterizing noise is important for the interpretation and inversion of time-distance measurements. In this paper we introduce a robust definition of travel time that can be applied to very noisy data. We then derive a simple model for the full covariance matrix of the travel-time measurements. This model depends only on the expectation value of the filtered power spectrum and assumes that solar oscillations are stationary and homogeneous on the solar surface. The validity of the model is confirmed through comparison with SOHO MDI measurements in a quiet-Sun region. We show that the correlation length of the noise in the travel times is about half the dominant wavelength of the filtered power spectrum. We also show that the signal-to-noise ratio in quiet-Sun travel-time maps increases roughly as the square root of the observation time and is at maximum for a distance near half the length scale of supergranulation.


Solar Physics | 2000

Time-Distance Helioseismology with f Modes as a Method for Measurement of Near-Surface Flows

T. L. Duvall; Laurent Gizon

Travel times measured for the f mode have been used to study flows near the solar surface in conjunction with simultaneous measurements of the magnetic field. Previous flow measurements of Doppler surface rotation, small magnetic feature rotation, supergranular pattern rotation, and surface meridional circulation have been confirmed. In addition, the flow in supergranules due to Coriolis forces has been measured. The spatial and temporal power spectra for a six-day observing sequence have been measured.


Nature | 2003

Wave-like properties of solar supergranulation

Laurent Gizon; T. L. Duvall Jr.; Jesper Schou

Supergranulation on the surface of the Sun is an organized cellular flow pattern with a characteristic scale of 30 Mm[1]. It is superficially similar to the well understood granulation[2] that operates at the 1.5 Mm natural scale of convection, which has led to the conventional view that supergranulation has its origin in the convective motion of cells of gas[3, 4], though this does not explain the observation that the supergranulation pattern appears to move faster around the Sun than the bulk of its surface[5, 6, 7]. A wave origin has been proposed[8] for supergranulation that may explain the superrotation, but it has never had much support. Here we report that the supergranulation pattern has oscillatory components with periods of 5-10 days, for which the best explanation is a spectrum of traveling waves. We show that there is excess power in the prograde and equatorward directions, which explains the observation of superrotation.Supergranulation on the surface of the Sun is a pattern of horizontal outflows, outlined by a network of small magnetic features, with a distinct scale of 30 million metres and an apparent lifetime of one day. It is generally believed that supergranulation corresponds to a preferred ‘cellular’ scale of thermal convection; rising magnetic fields are dragged by the outflows and concentrated into ‘ropes’ at the ‘cell’ boundaries. But as the convection zone is highly turbulent and stratified, numerical modelling has proved to be difficult and the dynamics remain poorly understood. Moreover, there is as yet no explanation for the observation that the pattern appears to rotate faster around the Sun than the magnetic features. Here we report observations showing that supergranulation undergoes oscillations and supports waves with periods of 6–9 days. The waves are predominantly prograde, which explains the apparent super-rotation of the pattern. The rotation of the plasma through which the pattern propagates is consistent with the motion of the magnetic network.

Collaboration


Dive into the Laurent Gizon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shravan M. Hanasoge

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Schmidt

Kiepenheuer Institut für Sonnenphysik

View shared research outputs
Researchain Logo
Decentralizing Knowledge