Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Gutierrez is active.

Publication


Featured researches published by Laurent Gutierrez.


Plant Biotechnology Journal | 2008

The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants.

Laurent Gutierrez; Mélanie Mauriat; Stéphanie Guénin; Jérôme Pelloux; Jean-François Lefebvre; Romain Louvet; Christine Rustérucci; Thomas Moritz; François Guerineau; Catherine Bellini; Olivier Van Wuytswinkel

Reverse transcription-polymerase chain reaction (RT-PCR) approaches have been used in a large proportion of transcriptome analyses published to date. The accuracy of the results obtained by this method strongly depends on accurate transcript normalization using stably expressed genes, known as references. Statistical algorithms have been developed recently to help validate reference genes, and most studies of gene expression in mammals, yeast and bacteria now include such validation. Surprisingly, this important approach is under-utilized in plant studies, where putative housekeeping genes tend to be used as references without any appropriate validation. Using quantitative RT-PCR, the expression stability of several genes commonly used as references was tested in various tissues of Arabidopsis thaliana and hybrid aspen (Populus tremula x Populus tremuloides). It was found that the expression of most of these genes was unstable, indicating that their use as references is inappropriate. The major impact of the use of such inappropriate references on the results obtained by RT-PCR is demonstrated in this study. Using aspen as a model, evidence is presented indicating that no gene can act as a universal reference, implying the need for a systematic validation of reference genes. For the first time, the extent to which the lack of a systematic validation of reference genes is a stumbling block to the reliability of results obtained by RT-PCR in plants is clearly shown.


The Plant Cell | 2009

Phenotypic Plasticity of Adventitious Rooting in Arabidopsis Is Controlled by Complex Regulation of AUXIN RESPONSE FACTOR Transcripts and MicroRNA Abundance

Laurent Gutierrez; John D. Bussell; Daniel Ioan Pacurar; Joseli Schwambach; Monica Pacurar; Catherine Bellini

The development of shoot-borne roots, or adventitious roots, is indispensable for mass propagation of elite genotypes. It is a complex genetic trait with a high phenotypic plasticity due to multiple endogenous and environmental regulatory factors. We demonstrate here that a subtle balance of activator and repressor AUXIN RESPONSE FACTOR (ARF) transcripts controls adventitious root initiation. Moreover, microRNA activity appears to be required for fine-tuning of this process. Thus, ARF17, a target of miR160, is a negative regulator, and ARF6 and ARF8, targets of miR167, are positive regulators of adventitious rooting. The three ARFs display overlapping expression domains, interact genetically, and regulate each others expression at both transcriptional and posttranscriptional levels by modulating miR160 and miR167 availability. This complex regulatory network includes an unexpected feedback regulation of microRNA homeostasis by direct and nondirect target transcription factors. These results provide evidence of microRNA control of phenotypic variability and are a significant step forward in understanding the molecular mechanisms regulating adventitious rooting.


The Plant Cell | 2012

Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis

Laurent Gutierrez; Gaëlle Mongelard; Kristyna Flokova; Daniel Ioan Pacurar; Ondrej Novak; Paul E. Staswick; Mariusz Kowalczyk; Monica Pacurar; Hervé Demailly; Gaia Geiss; Catherine Bellini

Vegetative propagation of plants from shoots requires the development of adventitious roots that regenerate from stem cuttings. Multiple endogenous and environmental factors control this complex process; this study in the model plant Arabidopsis thaliana shows that adventitious rooting is an adaptive developmental response involving crosstalk between auxin and jasmonate signaling pathways. Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other’s expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways.


The Plant Cell | 2008

Towards a Systematic Validation of References in Real-Time RT-PCR

Laurent Gutierrez; Mélanie Mauriat; Jérôme Pelloux; Catherine Bellini; Olivier Van Wuytswinkel

Real-time RT-PCR (also known as quantitative RT-PCR [qRT-PCR]) is a powerful tool for quantifying gene expression, combining both high sensitivity and specificity with efficient signal detection. It has relatively recently begun to be used to monitor gene expression in plants (reviewed in [Gachon et


Planta | 2006

Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana

Romain Louvet; Emilie Cavel; Laurent Gutierrez; Stéphanie Guénin; David Roger; Françoise Gillet; François Guerineau; Jérôme Pelloux

Pectin methylesterases (PME, EC. 3.1.1.11) are enzymes that demethylesterify plant cell wall pectins in muro. In Arabidopsis thaliana, putative PME proteins are thought to be encoded by a 66-member gene family. This study used real-time RT-PCR to gain an overview of the expression of the entire family at eight silique developmental stages, in flower buds and in vegetative tissue in the Arabidopsis. Only 15% of the PMEs were not expressed at any of the developmental stages studied. Among expressed PMEs, expression data could be clustered into five distinct groups: 19 PMEs highly or uniquely expressed in floral buds, 4 PMEs uniquely expressed at mid-silique developmental stages, 16 PMEs highly or uniquely expressed in silique at late developmental stages, 16 PMEs mostly ubiquitously expressed, and 1 PME with a specific expression pattern, i.e. not expressed during early silique development. Comparison of expression and phylogenetic profiles showed that, within phylogenetic group 2, all but one PME belong to the floral bud expression group. Similar results were shown for a subset of one of the phylogenetic group, which differed from others by containing most of the PMEs that do not possess any PRO part next to their catalytic part. Expression data were confirmed by two promoter:GUS transgenic plant analysis revealing a PME expressed in pollen and one in young seeds. Our results highlight the high diversity of PME expression profiles. They are discussed with regard to the role of PMEs in fruit development and cell growth.


Planta | 2006

Pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds

Christophe Hano; I. Martin; Ophélie Fliniaux; B. Legrand; Laurent Gutierrez; R. R. J. Arroo; François Mesnard; Frédéric Lamblin; Eric Lainé

The transcription activity of the pinoresinol–lariciresinol reductase (PLR) gene of Linum usitatissimum (so-called LuPLR), a key gene in lignan synthesis, was studied by RT-PCR and promoter–reporter transgenesis. The promoter was found to drive transcription of a GUSint reporter gene in the seed coats during the flax seed development. This fitted well with the tissue localization monitored by semi-quantitative RT-PCR of LuPLR expression. Accumulation of the main flax lignan secoisolariciresinol diglucoside was coherent with LuPLR expression during seed development. This three-way approach demonstrated that the LuPLR gene is expressed in the seed coat of flax seeds, and that the synthesis of PLR enzyme occurs where flax main lignan is found stored in mature seeds, confirming its involvement in SDG synthesis.


BMC Genomics | 2010

Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray

Stéphane Fenart; Yves-Placide Assoumou Ndong; Jorge Duarte; Nathalie Rivière; Jeroen Wilmer; Olivier Van Wuytswinkel; Anca Lucau; Emmanuelle Cariou; Godfrey Neutelings; Laurent Gutierrez; Brigitte Chabbert; Xavier Guillot; Reynald Tavernier; Simon Hawkins; Brigitte Thomasset

BackgroundFlax (Linum usitatissimum L.) has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars) and its cellulose-rich fibres (fibre-flax cultivars) used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax.ResultsNine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K) fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples). A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well as between two contrasted flax varieties.ConclusionAll results suggest that our high-density flax oligo-microarray platform can be used as a very sensitive tool for analyzing gene expression in a large variety of tissues as well as in different cultivars. Moreover, this highly reliable platform can also be used for the quantification of mRNA transcriptional profiling in different flax tissues.


Journal of Experimental Botany | 2012

A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions.

Daniel Ioan Pacurar; Monica Pacurar; Nathaniel R. Street; John D. Bussell; Tiberia Ioana Pop; Laurent Gutierrez; Catherine Bellini

The availability of a comprehensive set of resources including an entire annotated reference genome, sequenced alternative accessions, and a multitude of marker systems makes Arabidopsis thaliana an ideal platform for genetic mapping. PCR markers based on INsertions/DELetions (INDELs) are currently the most frequently used polymorphisms. For the most commonly used mapping combination, Columbia×Landsberg erecta (Col-0×Ler-0), the Cereon polymorphism database is a valuable resource for the generation of polymorphic markers. However, because the number of markers available in public databases for accessions other than Col-0 and Ler-0 is extremely low, mapping using other accessions is far from straightforward. This issue arose while cloning mutations in the Wassilewskija (Ws-4) background. In this work, approaches are described for marker generation in Ws-4 x Col-0. Complementary strategies were employed to generate 229 INDEL markers. Firstly, existing Col-0/Ler-0 Cereon predicted polymorphisms were mined for transferability to Ws-4. Secondly, Ws-0 ecotype Illumina sequence data were analyzed to identify INDELs that could be used for the development of PCR-based markers for Col-0 and Ws-4. Finally, shotgun sequencing allowed the identification of INDELs directly between Col-0 and Ws-4. The polymorphism of the 229 markers was assessed in seven widely used Arabidopsis accessions, and PCR markers that allow a clear distinction between the diverged Ws-0 and Ws-4 accessions are detailed. The utility of the markers was demonstrated by mapping more than 35 mutations in a Col-0×Ws-4 combination, an example of which is presented here. The potential contribution of next generation sequencing technologies to more traditional map-based cloning is discussed.


New Phytologist | 2011

Identification of pectin methylesterase 3 as a basic pectin methylesterase isoform involved in adventitious rooting in Arabidopsis thaliana

Stéphanie Guénin; Alain Mareck; Catherine Rayon; Romain Lamour; Yves Assoumou Ndong; Jean-Marc Domon; Fabien Sénéchal; Françoise Fournet; Elisabeth Jamet; Hervé Canut; Giuseppe Percoco; Grégory Mouille; Aurélia Rolland; Christine Rustérucci; François Guerineau; Olivier Van Wuytswinkel; Françoise Gillet; Azeddine Driouich; Patrice Lerouge; Laurent Gutierrez; Jérôme Pelloux

• Here, we focused on the biochemical characterization of the Arabidopsis thaliana pectin methylesterase 3 gene (AtPME3; At3g14310) and its role in plant development. • A combination of biochemical, gene expression, Fourier transform-infrared (FT-IR) microspectroscopy and reverse genetics approaches were used. • We showed that AtPME3 is ubiquitously expressed in A. thaliana, particularly in vascular tissues. In cell wall-enriched fractions, only the mature part of the protein was identified, suggesting that it is processed before targeting the cell wall. In all the organs tested, PME activity was reduced in the atpme3-1 mutant compared with the wild type. This was related to the disappearance of an activity band corresponding to a pI of 9.6 revealed by a zymogram. Analysis of the cell wall composition showed that the degree of methylesterification (DM) of galacturonic acids was affected in the atpme3-1 mutant. A change in the number of adventitious roots was found in the mutant, which correlated with the expression of the gene in adventitious root primordia. • Our results enable the characterization of AtPME3 as a major basic PME isoform in A. thaliana and highlight its role in adventitious rooting.


Plant Physiology | 2010

Leaf senescence is accompanied by an early disruption of the microtubule network in Arabidopsis.

Olivier Keech; Edouard Pesquet; Laurent Gutierrez; Abdul Ahad; Catherine Bellini; Steven M. Smith; Per Gardeström

The dynamic assembly and disassembly of microtubules (MTs) is essential for cell function. Although leaf senescence is a well-documented process, the role of the MT cytoskeleton during senescence in plants remains unknown. Here, we show that both natural leaf senescence and senescence of individually darkened Arabidopsis (Arabidopsis thaliana) leaves are accompanied by early degradation of the MT network in epidermis and mesophyll cells, whereas guard cells, which do not senesce, retain their MT network. Similarly, entirely darkened plants, which do not senesce, retain their MT network. While genes encoding the tubulin subunits and the bundling/stabilizing MT-associated proteins (MAPs) MAP65 and MAP70-1 were repressed in both natural senescence and dark-induced senescence, we found strong induction of the gene encoding the MT-destabilizing protein MAP18. However, induction of MAP18 gene expression was also observed in leaves from entirely darkened plants, showing that its expression is not sufficient to induce MT disassembly and is more likely to be part of a Ca2+-dependent signaling mechanism. Similarly, genes encoding the MT-severing protein katanin p60 and two of the four putative regulatory katanin p80s were repressed in the dark, but their expression did not correlate with degradation of the MT network during leaf senescence. Taken together, these results highlight the earliness of the degradation of the cortical MT array during leaf senescence and lead us to propose a model in which suppression of tubulin and MAP genes together with induction of MAP18 play key roles in MT disassembly during senescence.

Collaboration


Dive into the Laurent Gutierrez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Van Wuytswinkel

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar

Gaëlle Mongelard

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar

Jérôme Pelloux

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar

Stéphanie Guénin

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Pacurar

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Eric Lainé

University of Orléans

View shared research outputs
Top Co-Authors

Avatar

John D. Bussell

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge