Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Ouerdane is active.

Publication


Featured researches published by Laurent Ouerdane.


Journal of Analytical Atomic Spectrometry | 2003

Speciation analysis of nickel in the latex of a hyperaccumulating tree Sebertia acuminata by HPLC and CZE with ICP MS and electrospray MS-MS detection

Dirk Schaumlöffel; Laurent Ouerdane; Brice Bouyssiere; Ryszard Łobiński

Speciation of nickel was investigated in a hyperaccumulator tree, Sebertia acuminata, by liquid chromatography (LC) with parallel ICP MS and electrospray MS-MS detection. The latex of the tree was leached with water. Two separation mechanisms, size-exclusion (SEC) and capillary zone electrophoresis (CZE), were investigated for the separation of Ni-complexes. A preparative scale SEC allowed the isolation of six stable nickel species. A nickel complex with Mr 360 was identified by ES MS. The collision induced fragmentation (CID) of the m/z 360 ion suggested the presence of three carboxylic and one amino groups, and allowed the identification of a Ni-complex with nicotianamine. A modification of the SEC column with Ni2+ ions allowed the isolation of a fraction containing nickel citrate. Quantification of the species showed that in the water extract of the latex 99.4% of the nickel is complexed by citrate and 0.3% by nicotianamine.


Journal of Analytical Atomic Spectrometry | 2006

Speciation of non-covalent nickel species in plant tissue extracts by electrospray Q-TOFMS/MS after their isolation by 2D size exclusion-hydrophilic interaction LC (SEC-HILIC) monitored by ICP-MS

Laurent Ouerdane; Stéphane Mari; Pierre Czernic; Michel Lebrun; Ryszard Łobiński

An original approach based on successive size-exclusion and hydrophilic interaction HPLC (HILIC) was developed to purify traces of Ni species from a plant aqueous extract. The degree of purity achieved was for the first time sufficient for the identification, in a natural sample, of a number of non-covalent metal complexes by electrospray Q-TOFMS/MS. Nickel complexes with malate, citrate, histidine, EDTA and nicotianamine (NA) were identified in the roots, xylem, shoots and their protoplasts of a metal hyperaccumulator plant Thlaspi caerulescens. The quantitative recovery of the most stable of these complexes (with EDTA and NA) allowed their quantitative determination by SEC-ICP-MS.


Journal of Biological Chemistry | 2014

Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants

Louis Grillet; Laurent Ouerdane; Paulina Flis; Minh Thi Thanh Hoang; Marie-Pierre Isaure; Ryszard Lobinski; Catherine Curie; Stéphane Mari

Background: Iron long distance transport in plants is underdocumented. Results: Iron is delivered to embryos as ferric complexes with citrate/malate. An ascorbate-mediated reduction step is further required to acquire iron. Conclusion: Ascorbate plays a key role for the chemical reduction and transport of Fe2+. Significance: The identification of iron ligands and the transport process is crucial to further understand how iron is distributed within the plant. Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled 55Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds.


Science | 2016

Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus

Ghassan Ghssein; Catherine Brutesco; Laurent Ouerdane; Clémentine Fojcik; Amélie Izaute; Shuanglong Wang; Christine Hajjar; Ryszard Lobinski; David Lemaire; Pierre Richaud; Romé Voulhoux; Akbar Espaillat; Felipe Cava; Elise Borezée-Durant; Pascal Arnoux

A new metal scavenger for bacteria All cells must find a way to acquire trace metals. Bacteria and plants scavenge iron, for instance, by synthesizing and releasing iron-chelating compounds called siderophores. Ghssein et al. describe three enzymes in Staphylococcus aureus that are responsible for the biosynthesis of another type of metallophore (see the Perspective by Nolan). Metabolomics and a range of biochemical assays show that this compound, named staphylopine, is involved in the uptake of a range of metals, depending on the growth environment. The genes required for staphylopine biosynthesis are conserved across a number of pathogenic bacteria and are similar to those for a broad-spectrum metallophore produced by plants. Science, this issue p. 1105; see also p. 1055 Bacteria produce a broad-spectrum metal chelator similar to one used in plants. Metal acquisition is a vital microbial process in metal-scarce environments, such as inside a host. Using metabolomic exploration, targeted mutagenesis, and biochemical analysis, we discovered an operon in Staphylococcus aureus that encodes the different functions required for the biosynthesis and trafficking of a broad-spectrum metallophore related to plant nicotianamine (here called staphylopine). The biosynthesis of staphylopine reveals the association of three enzyme activities: a histidine racemase, an enzyme distantly related to nicotianamine synthase, and a staphylopine dehydrogenase belonging to the DUF2338 family. Staphylopine is involved in nickel, cobalt, zinc, copper, and iron acquisition, depending on the growth conditions. This biosynthetic pathway is conserved across other pathogens, thus underscoring the importance of this metal acquisition strategy in infection.


Journal of Proteomics | 2013

A comparative study of the Se/S substitution in methionine and cysteine in Se-enriched yeast using an inductively coupled plasma mass spectrometry (ICP MS)-assisted proteomics approach

Katarzyna Bierla; Juliusz Bianga; Laurent Ouerdane; Joanna Szpunar; Alexandros Yiannikouris; Ryszard Lobinski

UNLABELLED A proteomics approach based on 2D gel electrophoresis followed by HPLC-electrospray Orbitrap MS/MS was developed to investigate the replacement and the degree of the Se/S substitution in methionine and cysteine in Se-rich yeast. Capillary HPLC-inductively coupled plasma mass spectrometry (ICP-MS), employed in parallel to capHPLC-ESI MS, indicated the virtual independence of the ESI MS response of the peptide structure (in the elution range of 30-65% methanol), and hence, the use of ESI MS data to determine the SeCys/Cys and SeMet/Met substitution ratios. For the first time a considerable incorporation of selenocysteine (SeCys) in proteins of the yeast proteome despite the absence of the UGA codon was demonstrated. The SeMet/Met and SeCys/Cys ratios were determined in a large number of peptides (57 and 26, respectively) issued from the tryptic digestion of 19 Se-containing proteins located in the gel by laser ablation-ICP MS imaging. The average Se/S substitution in methionine was 42.9±35.0 and was protein dependent with ratios ranging from 5 to 160 for individual peptides. The substitution of sulphur in cysteine (14.1±4.8%) in the cysteine-containing peptides was relatively similar (ratios from 9 to 23). Taking into account that the cysteine/methionine average ratio (2:1) in the yeast protein fraction, the study allowed the conclusion that 10-15% of selenium present in Se-enriched yeast is in the form of selenocysteine making up the mass balance of selenium species. BIOLOGICAL SIGNIFICANCE For the first time a considerable incorporation of selenocysteine (SeCys) in proteins of the yeast proteome despite the absence of the UGA codon was demonstrated. It was achieved using a proteomics approach based on 2D gel electrophoresis followed by HPLC-electrospray Orbitrap MS/MS in order to investigate the replacement and the degree of the Se/S substitution in methionine and cysteine in Se-rich yeast.


Metallomics | 2010

Study of the Se-containing metabolomes in Se-rich yeast by size-exclusion—cation-exchange HPLC with the parallel ICP MS and electrospray orbital ion trap detection

Sandra Gil Casal; Johann Far; Katarzyna Bierla; Laurent Ouerdane; Joanna Szpunar

Strong cation exchange HPLC with the parallel ICP MS and electrospray hybrid linear ion trap quadrupole orbital trap mass spectrometry (ESI Orbitrap MS) detection was developed for the study of the metabolomic pattern of selenium in selenium-rich yeast. The mobile phase composition (gradient of ammonium formate in 20% methanol) was optimized to obtain separation in conditions guaranteeing the identical ICP MS sensitivity during the entire chromatographic run and the compatibility with electrospray ionization. Twenty seven Se-containing metabolites observed in the HPLC-ICP MS chromatogram were identified by ESI Orbitrap MS based on the Se isotopic pattern, the accurate molecular mass, and the multistage fragmentation patterns. The method allowed for the first time the correlation of the differences observed in HPLC-ICP MS chromatography of water extracts of Se-rich yeast samples from different manufacturers with the identity of the eluted compounds determined by ESI MS.


Analytical Chemistry | 2010

Identification of Metallothionein Subisoforms in HPLC Using Accurate Mass and Online Sequencing by Electrospray Hybrid Linear Ion Trap-Orbital Ion Trap Mass Spectrometry

Sandra Mounicou; Laurent Ouerdane; BéatriceL’Azou; Isabelle Passagne; CélineOhayon-Courtès; Joanna Szpunar; Ryszard Lobinski

A comprehensive approach to the characterization of metallothionein (MT) isoforms based on microbore HPLC with multimodal detection was developed. MTs were separated as Cd(7) complexes, detected by ICP MS and tentatively identified by molecular mass measured with 1-2 ppm accuracy using Orbital ion trap mass spectrometry. The identification was validated by accurate mass of the corresponding apo-MTs after postcolumn acidification and by their sequences acquired online by higher-energy collision dissociation MS/MS. The detection limits down to 10 fmol and 45 fmol could be obtained by ESI MS for apo- and Cd(7)-isoforms, respectively, and were lower than those obtained by ICP MS (100 fmol). The individual MT isoforms could be sequenced at levels as low as 200 fmol with the sequence coverage exceeding 90%. The approach was successfully applied to the identification of MT isoforms induced in a pig kidney cell line (LLC-PK(1)) exposed to CdS nanoparticles.


Metallomics | 2013

Comprehensive speciation of low-molecular weight selenium metabolites in mustard seeds using HPLC – electrospray linear trap/orbitrap tandem mass spectrometry

Laurent Ouerdane; Federica Aureli; Paulina Flis; Katarzyna Bierla; Hugues Preud'homme; Francesco Cubadda; Joanna Szpunar

An analytical methodology based on high-resolution high mass accuracy electrospray ionization (ESI) tandem MS assisted by Se-specific detection using inductively coupled plasma mass spectrometry (ICP MS) was developed for speciation of selenium (Se) in seeds of black mustard (Brassica nigra) grown on Se-rich soil. Size-exclusion LC-ICP MS allowed the determination of the Se distribution according to the molecular mass and the control of the species stability during extraction. The optimization of hydrophilic interaction of LC and cation-exchange HPLC resulted in analytical conditions making it possible to detect and characterize over 30 Se species using ESI MS, including a number of minor (<0.5%) metabolites. Selenoglucosinolates were found to be the most important class of species accounting for at least 15% of the total Se present and over 50% of all the metabolites. They were found particularly unstable during aqueous extraction leading to the loss of Se by volatilization as methylselenonitriles and methylselenoisothiocyanates identified using gas chromatography (GC) with the parallel ICP MS and atmospheric pressure chemical ionization (APCI) MS/MS detection. However, selenoglucosinolates could be efficiently recovered by extraction with 70% methanol. Other classes of identified species included selenoamino acids, selenosugars, selenosinapine and selenourea derivatives. The three types of reactions leading to the formation of selenometabolites were: the Se-S substitution in the metabolic pathway, oxidative reactions of -SeH groups with endogenous biomolecules, and chemical reactions, e.g., esterification, of Se-containing molecules and other biomolecules through functional groups not involving Se.


Analytical Chemistry | 2011

Determination of Arsenobetaine in Fish Tissue by Species Specific Isotope Dilution LC-LTQ-Orbitrap-MS and Standard Addition LC-ICPMS

Lu Yang; Jianfu Ding; Paulette Maxwell; Margaret McCooeye; Anthony Windust; Laurent Ouerdane; Sezgin Bakırdere; Scott N. Willie; Zoltán Mester

An accurate and precise method for the determination of arsenobetaine (AsB, (CH(3))(3)(+)AsCH(2)COO(-)) in fish samples using exact matching species specific isotope dilution (ID) liquid chromatography LTQ-Orbitrap mass spectrometry (LC-LTQ-Orbitrap-MS) and standard addition LC inductively coupled plasma mass spectrometry (LC-ICPMS) is described. Samples were extracted by sonication for 30 min with high purity deionized water. An in-house synthesized (13)C enriched AsB spike was used for species specific ID analysis whereas natural abundance AsB, synthesized and characterized by quantitative (1)H NMR (nuclear magnetic resonance spectroscopy), was used for reverse ID and standard addition LC-ICPMS. With the LTQ-Orbitrap-MS instrument in scan mode (m/z 170-190) and resolution set at 7500, the intensities of [M + H](+) ions at m/z of 179.0053 and 180.0087 were used to calculate the 179.0053/180.0087 ion ratio for quantification of AsB in fish tissues. To circumvent potential difficulty in mass bias correction, an exact matching approach was applied. A quantitatively prepared mixture of the natural abundance AsB standard and the enriched spike to give a ratio near one was used for mass bias correction. Concentrations of 9.65 ± 0.24 and 11.39 ± 0.39 mg kg(-1) (expanded uncertainty, k = 2) for AsB in two fish samples of fish1 and fish2, respectively, were obtained by ID LC-LTQ-Orbitrap-MS. These results are in good agreement with those obtained by standard addition LC-ICPMS, 9.56 ± 0.32 and 11.26 ± 0.44 mg kg(-1) (expanded uncertainty, k = 2), respectively. Fish CRM DORM-2 was used for method validation and measured results of 37.9 ± 1.8 and 38.7 ± 0.66 mg kg(-1) (expanded uncertainty, k = 2) for AsB obtained by standard addition LC-ICPMS and ID LC-LTQ-Orbitrap-MS, respectively, are in good agreement with the certified value of 39.0 ± 2.6 mg kg(-1) (expanded uncertainty, k = 2). Detection limits of 0.011 and 0.033 mg kg(-1) for AsB with LC-ICPMS and ID LC-LTQ-Orbitrap-MS, respectively, were obtained demonstrating that the technique is well suited to the determination AsB in fish samples. To the best of our knowledge, this is first application of species specific isotope dilution for the accurate and precise determination of AsB in biological tissues.


Metallomics | 2013

Speciation and identification of tellurium-containing metabolites in garlic, Allium sativum

Yasumi Anan; Miyuki Yoshida; Saki Hasegawa; Ryota Katai; Maki Tokumoto; Laurent Ouerdane; Ryszard Łobiński; Yasumitsu Ogra

Tellurium (Te) is a widely used metalloid in industry because of its unique chemical and physical properties. However, information about the biological and toxicological activities of Te in plants and animals is limited. Although Te is expected to be metabolized in organisms via the same pathway as sulfur and selenium (Se), no precise metabolic pathways are known in organisms, particularly in plants. To reveal the metabolic pathway of Te in plants, garlic, a well-known Se accumulator, was chosen as the model plant. Garlic was hydroponically cultivated and exposed to sodium tellurate, and Te-containing metabolites in the water extract of garlic leaves were identified using HPLC coupled with inductively coupled plasma mass spectrometry (ICP-MS) or electrospray tandem mass spectrometry (ESI-MS-MS). At least three Te-containing metabolites were detected using HPLC-ICP-MS, and two of them were subjected to HPLC-ESI-MS-MS for identification. The MS spectra obtained by ESI-MS-MS indicated that the metabolite was Te-methyltellurocysteine oxide (MeTeCysO). Then, MeTeCysO was chemically synthesized and its chromatographic behavior matched with that of the Te-containing metabolite in garlic. The other was assigned as cysteine S-methyltellurosulfide. These results suggest that garlic can assimilate tellurate, an inorganic Te compound, and tellurate is transformed into a Te-containing amino acid, the so-called telluroamino acid. This is the first report addressing that telluroamino acid is de novo synthesized in a higher plant.

Collaboration


Dive into the Laurent Ouerdane's collaboration.

Top Co-Authors

Avatar

Ryszard Lobinski

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Joanna Szpunar

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Katarzyna Bierla

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ryszard Lobinski

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Paulina Flis

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sandra Mounicou

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Stéphane Mari

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Zoltán Mester

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ryszard Łobiński

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Shuanglong Wang

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge