Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Risser is active.

Publication


Featured researches published by Laurent Risser.


International Journal of Computer Vision | 2012

Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation

François-Xavier Vialard; Laurent Risser; Daniel Rueckert; Colin J. Cotter

In the context of large deformations by diffeomorphisms, we propose a new diffeomorphic registration algorithm for 3D images that performs the optimization directly on the set of geodesic flows. The key contribution of this work is to provide an accurate estimation of the so-called initial momentum, which is a scalar function encoding the optimal deformation between two images through the Hamiltonian equations of geodesics. Since the initial momentum has proven to be a key tool for statistics on shape spaces, our algorithm enables more reliable statistical comparisons for 3D images.Our proposed algorithm is a gradient descent on the initial momentum, where the gradient is calculated using standard methods from optimal control theory. To improve the numerical efficiency of the gradient computation, we have developed an integral formulation of the adjoint equations associated with the geodesic equations.We then apply it successfully to the registration of 2D phantom images and 3D cerebral images. By comparing our algorithm to the standard approach of Beg et al. (Int. J. Comput. Vis. 61:139–157, 2005), we show that it provides a more reliable estimation of the initial momentum for the optimal path. In addition to promising statistical applications, we finally discuss different perspectives opened by this work, in particular in the new field of longitudinal analysis of biomedical images.


Journal of Cerebral Blood Flow and Metabolism | 2007

From homogeneous to fractal normal and tumorous microvascular networks in the brain.

Laurent Risser; Franck Plouraboué; Alexandre Steyer; Peter Cloetens; Géraldine Le Duc; Caroline Fonta

We studied normal and tumorous three-dimensional (3D) microvascular networks in primate and rat brain. Tissues were prepared following a new preparation technique intended for high-resolution synchrotron tomography of microvascular networks. The resulting 3D images with a spatial resolution of less than the minimum capillary diameter permit a complete description of the entire vascular network for volumes as large as tens of cubic millimeters. The structural properties of the vascular networks were investigated by several multiscale methods such as fractal and power-spectrum analysis. These investigations gave a new coherent picture of normal and pathological complex vascular structures. They showed that normal cortical vascular networks have scale-invariant fractal properties on a small scale from 1.4 μm up to 40 to 65 μm. Above this threshold, vascular networks can be considered as homogeneous. Tumor vascular networks show similar characteristics, but the validity range of the fractal regime extend to much larger spatial dimensions. These 3D results shed new light on previous two dimensional analyses giving for the first time a direct measurement of vascular modules associated with vessel-tissue surface exchange.


IEEE Transactions on Medical Imaging | 2010

Spatially Adaptive Mixture Modeling for Analysis of fMRI Time Series

Thomas Vincent; Laurent Risser; Philippe Ciuciu

Within-subject analysis in fMRI essentially addresses two problems, the detection of brain regions eliciting evoked activity and the estimation of the underlying dynamics. In Makni et aL, 2005 and Makni et aL, 2008, a detection-estimation framework has been proposed to tackle these problems jointly, since they are connected to one another. In the Bayesian formalism, detection is achieved by modeling activating and nonactivating voxels through independent mixture models (IMM) within each region while hemodynamic response estimation is performed at a regional scale in a nonparametric way. Instead of IMMs, in this paper we take advantage of spatial mixture models (SMM) for their nonlinear spatial regularizing properties. The proposed method is unsupervised and spatially adaptive in the sense that the amount of spatial correlation is automatically tuned from the data and this setting automatically varies across brain regions. In addition, the level of regularization is specific to each experimental condition since both the signal-to-noise ratio and the activation pattern may vary across stimulus types in a given brain region. These aspects require the precise estimation of multiple partition functions of underlying Ising fields. This is addressed efficiently using first path sampling for a small subset of fields and then using a recently developed fast extrapolation technique for the large remaining set. Simulation results emphasize that detection relying on supervised SMM outperforms its IMM counterpart and that unsupervised spatial mixture models achieve similar results without any hand-tuning of the correlation parameter. On real datasets, the gain is illustrated in a localizer fMRI experiment: brain activations appear more spatially resolved using SMM in comparison with classical general linear model (GLM)-based approaches, while estimating a specific parcel-based HRF shape. Our approach therefore validates the treatment of unsmoothed fMRI data without fixed GLM definition at the subject level and makes also the classical strategy of spatial Gaussian filtering deprecated.


Medical Image Analysis | 2013

Piecewise-diffeomorphic image registration: Application to the motion estimation between 3D CT lung images with sliding conditions

Laurent Risser; François-Xavier Vialard; Habib Y. Baluwala; Julia A. Schnabel

In this paper, we propose a new strategy for modelling sliding conditions when registering 3D images in a piecewise-diffeomorphic framework. More specifically, our main contribution is the development of a mathematical formalism to perform Large Deformation Diffeomorphic Metric Mapping registration with sliding conditions. We also show how to adapt this formalism to the LogDemons diffeomorphic registration framework. We finally show how to apply this strategy to estimate the respiratory motion between 3D CT pulmonary images. Quantitative tests are performed on 2D and 3D synthetic images, as well as on real 3D lung images from the MICCAI EMPIRE10 challenge. Results show that our strategy estimates accurate mappings of entire 3D thoracic image volumes that exhibit a sliding motion, as opposed to conventional registration methods which are not capable of capturing discontinuous deformations at the thoracic cage boundary. They also show that although the deformations are not smooth across the location of sliding conditions, they are almost always invertible in the whole image domain. This would be helpful for radiotherapy planning and delivery.


IEEE Transactions on Medical Imaging | 2008

Gap Filling of 3-D Microvascular Networks by Tensor Voting

Laurent Risser; Franck Plouraboué; Xavier Descombes

We present a new algorithm which merges discontinuities in 3-D images of tubular structures presenting undesirable gaps. The application of the proposed method is mainly associated to large 3-D images of microvascular networks. In order to recover the real network topology, we need to fill the gaps between the closest discontinuous vessels. The algorithm presented in this paper aims at achieving this goal. This algorithm is based on the skeletonization of the segmented network followed by a tensor voting method. It permits to merge the most common kinds of discontinuities found in microvascular networks. It is robust, easy to use, and relatively fast. The microvascular network images were obtained using synchrotron tomography imaging at the European Synchrotron Radiation Facility. These images exhibit samples of intracortical networks. Representative results are illustrated.


IEEE Transactions on Medical Imaging | 2011

Simultaneous Multi-scale Registration Using Large Deformation Diffeomorphic Metric Mapping

Laurent Risser; François-Xavier Vialard; Robin Wolz; Maria Murgasova; Darryl D. Holm; Daniel Rueckert

In the framework of large deformation diffeomorphic metric mapping (LDDMM), we present a practical methodology to integrate prior knowledge about the registered shapes in the regularizing metric. Our goal is to perform rich anatomical shape comparisons from volumetric images with the mathematical properties offered by the LDDMM framework. We first present the notion of characteristic scale at which image features are deformed. We then propose a methodology to compare anatomical shape variations in a multi-scale fashion, i.e., at several characteristic scales simultaneously. In this context, we propose a strategy to quantitatively measure the feature differences observed at each characteristic scale separately. After describing our methodology, we illustrate the performance of the method on phantom data. We then compare the ability of our method to segregate a group of subjects having Alzheimers disease and a group of controls with a classical coarse to fine approach, on standard 3D MR longitudinal brain images. We finally apply the approach to quantify the anatomical development of the human brain from 3D MR longitudinal images of pre-term babies. Results show that our method registers accurately volumetric images containing feature differences at several scales simultaneously with smooth deformations.


Medical Image Analysis | 2014

An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration

Bartlomiej W. Papiez; Mattias P. Heinrich; Jérôme Fehrenbach; Laurent Risser; Julia A. Schnabel

Several biomedical applications require accurate image registration that can cope effectively with complex organ deformations. This paper addresses this problem by introducing a generic deformable registration algorithm with a new regularization scheme, which is performed through bilateral filtering of the deformation field. The proposed approach is primarily designed to handle smooth deformations both between and within body structures, and also more challenging deformation discontinuities exhibited by sliding organs. The conventional Gaussian smoothing of deformation fields is replaced by a bilateral filtering procedure, which compromises between the spatial smoothness and local intensity similarity kernels, and is further supported by a deformation field similarity kernel. Moreover, the presented framework does not require any explicit prior knowledge about the organ motion properties (e.g. segmentation) and therefore forms a fully automated registration technique. Validation was performed using synthetic phantom data and publicly available clinical 4D CT lung data sets. In both cases, the quantitative analysis shows improved accuracy when compared to conventional Gaussian smoothing. In addition, we provide experimental evidence that masking the lungs in order to avoid the problem of sliding motion during registration performs similarly in terms of the target registration error when compared to the proposed approach, however it requires accurate lung segmentation. Finally, quantification of the level and location of detected sliding motion yields visually plausible results by demonstrating noticeable sliding at the pleural cavity boundaries.


medical image computing and computer assisted intervention | 2011

Motion correction and parameter estimation in dceMRI sequences: application to colorectal cancer

Manav Bhushan; Julia A. Schnabel; Laurent Risser; Mattias P. Heinrich; J. Michael Brady; Mark Jenkinson

We present a novel Bayesian framework for non-rigid motion correction and pharmacokinetic parameter estimation in dceMRI sequences which incorporates a physiological image formation model into the similarity measure used for motion correction. The similarity measure is based on the maximization of the joint posterior probability of the transformations which need to be applied to each image in the dataset to bring all images into alignment, and the physiological parameters which best explain the data. The deformation framework used to deform each image is based on the diffeomorphic logDemons algorithm. We then use this method to co-register images from simulated and real dceMRI datasets and show that the method leads to an improvement in the estimation of physiological parameters as well as improved alignment of the images.


Multiscale Modeling & Simulation | 2012

Mixture Of Kernels And Iterated Semidirect Product Of Diffeomorphisms Groups

Martins Bruveris; Laurent Risser; François-Xavier Vialard

In the framework of large deformation diffeomorphic metric mapping (LDDMM), a multiscale theory for the diffeomorphism group is developed based on previous works of the authors. The purpose of this paper is (1) to develop in detail a variational approach for multiscale analysis of diffeomorphisms, (2) to generalize to several scales the the semidirect product representation, and (3) to illustrate the resulting diffeomorphic decomposition on synthetic and real images. We also show that the so-called kernel bundle method and the mixture of kernels are equivalent.


signal processing systems | 2011

Min-max Extrapolation Scheme for Fast Estimation of 3D Potts Field Partition Functions. Application to the Joint Detection-Estimation of Brain Activity in fMRI

Laurent Risser; Thomas Vincent; Florence Forbes; Jérôme Idier; Philippe Ciuciu

In this paper, we propose a fast numerical scheme to estimate Partition Functions (PF) of symmetric Potts fields. Our strategy is first validated on 2D two-color Potts fields and then on 3D two- and three-color Potts fields. It is then applied to the joint detection-estimation of brain activity from functional Magnetic Resonance Imaging (fMRI) data, where the goal is to automatically recover activated, deactivated and inactivated brain regions and to estimate region-dependent hemodynamic filters. For any brain region, a specific 3D Potts field indeed embodies the spatial correlation over the hidden states of the voxels by modeling whether they are activated, deactivated or inactive. To make spatial regularization adaptive, the PFs of the Potts fields over all brain regions are computed prior to the brain activity estimation. Our approach is first based upon a classical path-sampling method to approximate a small subset of reference PFs corresponding to prespecified regions. Then, we propose an extrapolation method that allows us to approximate the PFs associated to the Potts fields defined over the remaining brain regions. In comparison with preexisting methods either based on a path-sampling strategy or mean-field approximations, our contribution strongly alleviates the computational cost and makes spatially adaptive regularization of whole brain fMRI datasets feasible. It is also robust against grid inhomogeneities and efficient irrespective of the topological configurations of the brain regions.

Collaboration


Dive into the Laurent Risser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jérôme Idier

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge