Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurent Toffin is active.

Publication


Featured researches published by Laurent Toffin.


Environmental Microbiology | 2008

Simultaneous analysis of microbial identity and function using NanoSIMS

Tianlun Li; Ting-Di Wu; Laurent Mazéas; Laurent Toffin; Jean-Luc Guerquin-Kern; Gérard Leblon; Théodore Bouchez

Identifying the function of uncultured microbes in their environments today remains one of the main challenges for microbial ecologists. In this article, we describe a new method allowing simultaneous analysis of microbial identity and function. This method is based on the visualization of oligonucleotide probe-conferred hybridization signal in single microbial cells and isotopic measurement using high-resolution ion microprobe (NanoSIMS). In order to characterize the potential of the method, an oligonucleotide containing iodized cytidine was hybridized on fixed cells of Escherichia coli cultured on media containing different levels of 13C or 15N. Iodine signals could clearly be localized on targeted cells and the isotopic enrichment could be monitored at the single-cell level. The applicability of this new technique to the study of in situ ecophysiology of uncultured microorganisms within complex microbial communities is illustrated.


Applied and Environmental Microbiology | 2002

Construction of a Shuttle Vector for, and Spheroplast Transformation of, the Hyperthermophilic Archaeon Pyrococcus abyssi

Soizick Lucas; Laurent Toffin; Yvan Zivanovic; Daniel Charlier; Hélène Moussard; Patrick Forterre; Daniel Prieur; Gaël Erauso

ABSTRACT Our understanding of the genetics of species of the best-studied hyperthermophilic archaea, Pyrococcus spp., is presently limited by the lack of suitable genetic tools, such as a stable cloning vector and the ability to select individual transformants on plates. Here we describe the development of a reliable host-vector system for the hyperthermophilic archaeon Pyrococcus abyssi. Shuttle vectors were constructed based on the endogenous plasmid pGT5 from P. abyssi strain GE5 and the bacterial vector pLitmus38. As no antibiotic resistance marker is currently available for Pyrococcus spp., we generated a selectable auxotrophic marker. Uracil auxotrophs resistant to 5-fluoorotic acid were isolated from P. abyssi strain GE9 (devoid of pGT5). Genetic analysis of these mutants revealed mutations in the pyrE and/or pyrF genes, encoding key enzymes of the pyrimidine biosynthetic pathway. Two pyrE mutants exhibiting low reversion rates were retained for complementation experiments. For that purpose, the pyrE gene, encoding orotate phosphoribosyltransferase (OPRTase) of the thermoacidophilic crenarchaeote Sulfolobus acidocaldarius, was introduced into the pGT5-based vector, giving rise to pYS2. With a polyethylene glycol-spheroplast method, we could reproducibly transform P. abyssi GE9 pyrE mutants to prototrophy, though with low frequency (102 to 103 transformants per μg of pYS2 plasmid DNA). Transformants did grow as well as the wild type on minimal medium without uracil and showed comparable OPRTase activity. Vector pYS2 proved to be very stable and was maintained at high copy number under selective conditions in both Escherichia coli and P. abyssi.


FEMS Microbiology Ecology | 2004

Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program

Laurent Toffin; Gordon Webster; Andrew J. Weightman; John C. Fry; Daniel Prieur

Culturable bacteria were detected in deep-sea sediment samples collected from the Nankai Trough site 1173 (Ocean Drilling Program, ODP, Leg 190) at 4.15 m below the seafloor with 4791 m of overlying water. In this deep ocean near surface sediment, mainly fermentative heterotrophs, autotrophic acetogens and sulfate-reducing bacteria were enriched by using two different non-selective enrichment culture media. Culturable bacterial population shifts within the deep marine sediment enrichments were monitored by using denaturating gradient gel electrophoresis (DGGE). DGGE analysis revealed a decrease in the number of 16S rRNA gene fragments from high to low carbon concentrations, and from low to high dilution of inoculum, suggesting that fast-growing bacteria were numerically dominant in enrichment culture samples. The dominant 16S rRNA fragments observed in DGGE gels were assigned to the Firmicutes, Proteobacteria (gamma and delta subgroups) and Spirochaeta phyla. Continual sub-culture and purification resulted in two isolates which were phylogenetically identified as members of the genera Acetobacterium and Marinilactibacillus. Our results, which combine enrichment culturing with DGGE analysis, indicated that enrichment cultures derived from inoculum dilution and media with various concentrations of carbon could facilitate the detection and isolation of a greater number of environmentally relevant bacterial species than when using traditional enrichment techniques alone.


Environmental Microbiology | 2011

Unveiling microbial life in new deep‐sea hypersaline Lake Thetis. Part I: Prokaryotes and environmental settings

Violetta La Cono; Francesco Smedile; Giovanni Bortoluzzi; Erika Arcadi; Giovanna Maimone; Enzo Messina; Mireno Borghini; Elvira Oliveri; Salvatore Mazzola; Stephan L'Haridon; Laurent Toffin; Lucrezia Genovese; Manuel Ferrer; Laura Giuliano; Peter N. Golyshin; Michail M. Yakimov

In September 2008, an expedition of the RV Urania was devoted to exploration of the genomic richness of deep hypersaline anoxic lakes (DHALs) located in the Western part of the Mediterranean Ridge. Approximately 40 nautical miles SE from Urania Lake, the presence of anoxic hypersaline lake, which we named Thetis, was confirmed by swath bathymetry profiling and through immediate sampling casts. The brine surface of the Thetis Lake is located at a depth of 3258 m with a thickness of ≈ 157 m. Brine composition was found to be thalassohaline, saturated by NaCl with a total salinity of 348‰, which is one of highest value reported for DHALs. Similarly to other Mediterranean DHALs, seawater-brine interface of Thetis represents a steep pycno- and chemocline with gradients of salinity, electron donors and acceptors and posseses a remarkable stratification of prokaryotic communities, observed to be more metabolically active in the upper interface where redox gradient was sharper. [(14) C]-bicarbonate fixation analysis revealed that microbial communities are sustained by sulfur-oxidizing chemolithoautotrophic primary producers that thrive within upper interface. Besides microaerophilic autotrophy, heterotrophic sulfate reduction, methanogenesis and anaerobic methane oxidation are likely the predominant processes driving the ecosystem of Thetis Lake.


The ISME Journal | 2013

Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California)

Adrien Vigneron; Perrine Cruaud; Patricia Pignet; Jean-Claude Caprais; Marie-Anne Cambon-Bonavita; Anne Godfroy; Laurent Toffin

Cold seeps, located along the Sonora Margin transform fault in the Guaymas Basin, were extensively explored during the ‘BIG’ cruise in June 2010. They present a seafloor mosaic pattern consisting of different faunal assemblages and microbial mats. To investigate this mostly unknown cold and hydrocarbon-rich environment, geochemical and microbiological surveys of the sediments underlying two microbial mats and a surrounding macrofaunal habitat were analyzed in detail. The geochemical measurements suggest biogenic methane production and local advective sulfate-rich fluxes in the sediments. The distributions of archaeal communities, particularly those involved in the methane cycle, were investigated at different depths (surface to 18 cm below the sea floor (cmbsf)) using complementary molecular approaches, such as Automated method of Ribosomal Intergenic Spacer Analysis (ARISA), 16S rRNA libraries, fluorescence in situ hybridization and quantitative polymerase chain reaction with new specific primer sets targeting methanogenic and anaerobic methanotrophic lineages. Molecular results indicate that metabolically active archaeal communities were dominated by known clades of anaerobic methane oxidizers (archaeal anaerobic methanotroph (ANME)-1, -2 and -3), including a novel ‘ANME-2c Sonora’ lineage. ANME-2c were found to be dominant, metabolically active and physically associated with syntrophic Bacteria in sulfate-rich shallow sediment layers. In contrast, ANME-1 were more prevalent in the deepest sediment samples and presented a versatile behavior in terms of syntrophic association, depending on the sulfate concentration. ANME-3 were concentrated in small aggregates without bacterial partners in a restricted sediment horizon below the first centimetres. These niche specificities and syntrophic behaviors, depending on biological surface assemblages and environmental availability of electron donors, acceptors and carbon substrates, suggest that ANME could support alternative metabolic pathways than syntrophic anaerobic oxidation of methane.


Environmental Microbiology | 2011

Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea

Cassandre Sara Lazar; R. John Parkes; Barry Andrew Cragg; Stéphane L'Haridon; Laurent Toffin

Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates. Biogeochemical and molecular genetic analyses were carried out to assess the methanogenic activity rates, pathways and diversity in the hypersaline sediments of the centre of the Napoli mud volcano. Methylotrophic methanogenesis was the only significant methanogenic pathway in the shallow sediments (0-40 cm) but was also measured throughout the sediment core, confirming that methylotrophic methanogens could be well adapted to hypersaline environments. Hydrogenotrophic methanogenesis was the dominant pathway below 50 cm; however, low rates of acetoclastic methanogenesis were also present, even in sediment layers with the highest salinity, showing that these methanogens can thrive in this extreme environment. PCR-DGGE and methyl coenzyme M reductase gene libraries detected sequences affiliated with anaerobic methanotrophs (mainly ANME-1) as well as Methanococcoides methanogens. Results show that the hypersaline conditions in the centre of the Napoli mud volcano influence active biogenic methane fluxes and methanogenic/methylotrophic diversity.


Frontiers in Marine Science | 2015

Microbial communities associated with benthic faunal assemblages at cold seep sediments of the Sonora Margin, Guaymas Basin

Perrine Cruaud; Adrien Vigneron; Patricia Pignet; Jean-Claude Caprais; Françoise Lesongeur; Laurent Toffin; Anne Godfroy; Marie-Anne Cambon-Bonavita

The Sonora Margin cold seeps present a seafloor mosaic pattern consisting of different faunal assemblages and microbial mats. To better understand if sedimentary microbial communities reflect this patchy distribution, all major habitats were investigated using four complementary approaches: 16S rRNA 454 pyrosequencing, quantitative polymerase chain reaction, fluorescence in situ hybridization and geochemistry analyses. This study reveals that sediments populated by different surface assemblages show distinct porewater geochemistry features and are associated with distinct microbial communities. In the sediments underlying the microbial mat and the surrounding macrofauna, microbial communities were dominated by anaerobic methane oxidizers (archaeal anaerobic methanotroph ANME) and sulfate-reducing Deltaproteobacteria. In contrast, sediment-associated microbial communities underlying the megafauna habitats (vesicomyids and siboglinids) were characterized by a lower biomass and important proportions of the Marine Benthic Group D (MBG-D), Chloroflexi as well as filamentous Gammaproteobacteria and Deltaproteobacteria. Together, geochemical and microbial surveys indicate that porewater methane concentrations play an important role in the microbial community structure and subsequently in the establishment of the surface colonizers. Furthermore, presence and activity of the surface colonizers influence the underlying microbial communities probably because of modification of energy source availabilities.


Environmental Microbiology | 2014

Bacterial communities and syntrophic associations involved in anaerobic oxidation of methane process of the Sonora Margin cold seeps, Guaymas Basin

Adrien Vigneron; Perrine Cruaud; Patricia Pignet; Jean-Claude Caprais; Nicolas Gayet; Marie-Anne Cambon-Bonavita; Anne Godfroy; Laurent Toffin

SUMMARY The Sonora Margin cold seeps present on the seafloor a patchiness pattern of white microbial mats surrounded by polychaete and gastropod beds. These surface assemblages are fuelled by abundant organic inputs sedimenting from the water column and upward-flowing seep fluids. Elevated microbial density was observed in the underlying sediments. A previous study on the same samples identified anaerobic oxidation of methane (AOM) as the potential dominant archaeal process in these Sonora Margin sediments, probably catalysed by three clades of archaeal anaerobic methanotrophs (ANME-1, ANME-2 and ANME-3) associated with bacterial syntrophs. In this study, molecular surveys and microscopic observations investigating the diversity of Bacteria involved in AOM process, as well as the environmental parameters affecting the composition and the morphologies of AOM consortia in the Sonora Margin sediments were carried out. Two groups of Bacteria were identified within the AOM consortia, the Desulfosarcina/Desulfococcus SEEP SRB-1a group and a Desulfobulbus-related group. These bacteria showed different niche distributions, association specificities and consortia architectures, depending on sediment surface communities, geochemical parameters and ANME-associated phylogeny. Therefore, the syntrophic AOM process appears to depend on sulphate-reducing bacteria with different ecological niches and/or metabolisms, in a biofilm-like organic matrix.


FEMS Microbiology Ecology | 2012

Methanogenic activity and diversity in the centre of the Amsterdam Mud Volcano, Eastern Mediterranean Sea

Cassandre S Lazar; R. John Parkes; Barry Andrew Cragg; Stéphane L'Haridon; Laurent Toffin

Marine mud volcanoes are geological structures emitting large amounts of methane from their active centres. The Amsterdam mud volcano (AMV), located in the Anaximander Mountains south of Turkey, is characterized by intense active methane seepage produced in part by methanogens. To date, information about the diversity or the metabolic pathways used by the methanogens in active centres of marine mud volcanoes is limited. (14)C-radiotracer measurements showed that methylamines/methanol, H(2)/CO(2) and acetate were used for methanogenesis in the AMV. Methylotrophic methanogenesis was measured all along the sediment core, Methanosarcinales affiliated sequences were detected using archaeal 16S PCR-DGGE and mcrA gene libraries, and enrichments of methanogens showed the presence of Methanococcoides in the shallow sediment layers. Overall acetoclastic methanogenesis was higher than hydrogenotrophic methanogenesis, which is unusual for cold seep sediments. Interestingly, acetate porewater concentrations were extremely high in the AMV sediments. This might be the result of organic matter cracking in deeper hotter sediment layers. Methane was also produced from hexadecanes. For the most part, the methanogenic community diversity was in accordance with the depth distribution of the H(2)/CO(2) and acetate methanogenesis. These results demonstrate the importance of methanogenic communities in the centres of marine mud volcanoes.


PLOS ONE | 2014

Phylogenetic and Functional Diversity of Microbial Communities Associated with Subsurface Sediments of the Sonora Margin, Guaymas Basin

Adrien Vigneron; Perrine Cruaud; Erwan Roussel; Patricia Pignet; Jean-Claude Caprais; Nolwenn Callac; Maria-Cristina Ciobanu; Anne Godfroy; Barry Andrew Cragg; John Parkes; Joy D. Van Nostrand; Zhili He; Jizhong Zhou; Laurent Toffin

Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments.

Collaboration


Dive into the Laurent Toffin's collaboration.

Top Co-Authors

Avatar

Daniel Prieur

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

L'Haridon S

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge