Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauri Lehtovaara is active.

Publication


Featured researches published by Lauri Lehtovaara.


Nature Communications | 2013

All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures

Huayan Yang; Yu Wang; Huaqi Huang; Lars Gell; Lauri Lehtovaara; Sami Malola; Hannu Häkkinen; Nanfeng Zheng

Noble metal nanoparticles stabilized by organic ligands are important for applications in assembly, site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, molecular recognition and molecular electronics, and catalysis. Here we report crystal structures and theoretical analysis of three Ag44(SR)30 and three Au12Ag32(SR)30 intermetallic nanoclusters stabilized with fluorinated arylthiols (SR=SPhF, SPhF2 or SPhCF3). The nanocluster forms a Keplerate solid of concentric icosahedral and dodecahedral atom shells, protected by six Ag2(SR)5 units. Positive counterions in the crystal indicate a high negative charge of 4(-) per nanoparticle, and density functional theory calculations explain the stability as an 18-electron superatom shell closure in the metal core. Highly featured optical absorption spectra in the ultraviolet-visible region are analysed using time-dependent density functional perturbation theory. This work forms a basis for further understanding, engineering and controlling of stability as well as electronic and optical properties of these novel nanomaterials.


ACS Nano | 2013

Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters.

Sami Malola; Lauri Lehtovaara; Jussi Enkovaara; Hannu Häkkinen

Gold nanoclusters protected by a thiolate monolayer (MPC) are widely studied for their potential applications in site-specific bioconjugate labeling, sensing, drug delivery, and molecular electronics. Several MPCs with 1-2 nm metal cores are currently known to have a well-defined molecular structure, and they serve as an important link between molecularly dispersed gold and colloidal gold to understand the size-dependent electronic and optical properties. Here, we show by using an ab initio method together with atomistic models for experimentally observed thiolate-stabilized gold clusters how collective electronic excitations change when the gold core of the MPC grows from 1.5 to 2.0 nm. A strong localized surface plasmon resonance (LSPR) develops at 540 nm (2.3 eV) in a cluster with a 2.0 nm metal core. The protecting molecular layer enhances the LSPR, while in a smaller cluster with 1.5 nm gold core, the plasmon-like resonance at 540 nm is confined in the metal core by the molecular layer. Our results demonstrate a threshold size for the emergence of LSPR in these systems and help to develop understanding of the effect of the molecular overlayer on plasmonic properties of MPCs enabling engineering of their properties for plasmonic applications.


Journal of Chemical Physics | 2008

Time-dependent density-functional theory in the projector augmented-wave method.

Michael Walter; Hannu Häkkinen; Lauri Lehtovaara; Martti J. Puska; Jussi Enkovaara; C. Rostgaard; Jens Jørgen Mortensen

We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we found perfect agreement in the calculated photoabsorption spectra. We discuss the strengths and weaknesses of the two methods as well as their convergence properties. We demonstrate different applications of the methods by calculating excitation energies and excited state Born-Oppenheimer potential surfaces for a set of atoms and molecules with the linear-response method and by calculating nonlinear emission spectra using the time-propagation method.


Nature Communications | 2016

Plasmonic twinned silver nanoparticles with molecular precision

Huayan Yang; Yu Wang; Xi Chen; Xiaojing Zhao; Lin Gu; Huaqi Huang; Juanzhu Yan; Chaofa Xu; Gang Li; Junchao Wu; Alison J. Edwards; Birger Dittrich; Zichao Tang; Dongdong Wang; Lauri Lehtovaara; Hannu Häkkinen; Nanfeng Zheng

Determining the structures of nanoparticles at atomic resolution is vital to understand their structure–property correlations. Large metal nanoparticles with core diameter beyond 2 nm have, to date, eluded characterization by single-crystal X-ray analysis. Here we report the chemical syntheses and structures of two giant thiolated Ag nanoparticles containing 136 and 374 Ag atoms (that is, up to 3 nm core diameter). As the largest thiolated metal nanoparticles crystallographically determined so far, these Ag nanoparticles enter the truly metallic regime with the emergence of surface plasmon resonance. As miniatures of fivefold twinned nanostructures, these structures demonstrate a subtle distortion within fivefold twinned nanostructures of face-centred cubic metals. The Ag nanoparticles reported in this work serve as excellent models to understand the detailed structure distortion within twinned metal nanostructures and also how silver nanoparticles can span from the molecular to the metallic regime.


Journal of Computational Physics | 2007

Solution of time-independent Schrödinger equation by the imaginary time propagation method

Lauri Lehtovaara; Jari Toivanen; Jussi Eloranta

Numerical solution of eigenvalues and eigenvectors of large matrices originating from discretization of linear and non-linear Schrodinger equations using the imaginary time propagation (ITP) method is described. Convergence properties and accuracy of 2nd and 4th order operator-splitting methods for the ITP method are studied using numerical examples. The natural convergence of the method is further accelerated with a new dynamic time step adjustment method. The results show that the ITP method has better scaling with respect to matrix size as compared to the implicitly restarted Lanczos method. An efficient parallel implementation of the ITP method for shared memory computers is also demonstrated.


ACS Nano | 2014

Supramolecular Functionalization and Concomitant Enhancement in Properties of Au25 Clusters

Ammu Mathew; Ganapati Natarajan; Lauri Lehtovaara; Hannu Häkkinen; Ravva Mahesh Kumar; V. Subramanian; Abdul Jaleel; T. Pradeep

We present a versatile approach for tuning the surface functionality of an atomically precise 25 atom gold cluster using specific host-guest interactions between β-cyclodextrin (CD) and the ligand anchored on the cluster. The supramolecular interaction between the Au25 cluster protected by 4-(t-butyl)benzyl mercaptan, labeled Au25SBB18, and CD yielding Au25SBB18∩CDn (n = 1, 2, 3, and 4) has been probed experimentally using various spectroscopic techniques and was further analyzed by density functional theory calculations and molecular modeling. The viability of our method in modifying the properties of differently functionalized Au25 clusters is demonstrated. Besides modifying their optoelectronic properties, the CD moieties present on the cluster surface provide enhanced stability and optical responses which are crucial in view of the potential applications of these systems. Here, the CD molecules act as an umbrella which protects the fragile cluster core from the direct interaction with many destabilizing agents such as metal ions, ligands, and so on. Apart from the inherent biocompatibility of the CD-protected Au clusters, additional capabilities acquired by the supramolecular functionalization make such modified clusters preferred materials for applications, including those in biology.


Physical Review Letters | 2012

High-pressure structures of disilane and their superconducting properties.

José A. Flores-Livas; Maximilian Amsler; Thomas J. Lenosky; Lauri Lehtovaara; Silvana Botti; Miguel A. L. Marques; Stefan Goedecker

A systematic ab initio search for low-enthalpy phases of disilane (Si2H6) at high pressures was performed based on the minima hopping method. We found a novel metallic phase of disilane with Cmcm symmetry, which is enthalpically more favorable than the recently proposed structures of disilane up to 280 GPa, but revealing compositional instability below 190 GPa. The Cmcm phase has a moderate electron-phonon coupling yielding a superconducting transition temperature T(c) of around 20 K at 100 GPa, decreasing to 13 K at 220 GPa. These values are significantly smaller than previously predicted T(c))s for disilane at equivalent pressure. This shows that similar but different crystalline structures of a material can result in dramatically different T(c)s and stresses the need for a systematic search for a crystalline ground state.Through a systematic structural search we found an allotrope of carbon with Cmmm symmetry which we predict to be more stable than graphite for pressures above 10 GPa. This material, which we refer to as Z-carbon, is formed by pure sp(3) bonds and it provides an explanation to several features in experimental x-ray diffraction and Raman spectra of graphite under pressure. The transition from graphite to Z-carbon can occur through simple sliding and buckling of graphene sheets. Our calculations predict that Z-carbon is a transparent wide band-gap semiconductor with a hardness comparable to diamond.


Journal of Physical Chemistry A | 2013

Electronic structure and optical properties of the thiolate-protected Au28(SMe)20 cluster.

Stefan Knoppe; Sami Malola; Lauri Lehtovaara; Thomas Bürgi; Hannu Häkkinen

The recently reported crystal structure of the Au28(TBBT)20 cluster (TBBT: p-tert-butylbenzenethiolate) is analyzed with (time-dependent) density functional theory (TD-DFT). Bader charge analysis reveals a novel trimeric Au3(SR)4 binding motif. The cluster can be formulated as Au14(Au2(SR)3)4(Au3(SR)4)2. The electronic structure of the Au14(6+) core and the ligand-protected cluster were analyzed, and their stability can be explained by formation of distorted eight-electron superatoms. Optical absorption and circular dichroism (CD) spectra were calculated and compared to the experiment. Assignment of handedness of the intrinsically chiral cluster is possible.


Physical Review B | 2015

Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations

Mikael Kuisma; Arto Sakko; Tuomas P. Rossi; Ask Hjorth Larsen; Jussi Enkovaara; Lauri Lehtovaara; Tapio T. Rantala

We observe using ab initio methods that localized surface plasmon resonances in icosahedral silver nanoparticles enter the asymptotic region already between diameters of 1 and 2 nm, converging close to the classical quasistatic limit around 3.4 eV. We base the observation on time-dependent density-functional theory simulations of the icosahedral silver clusters Ag-55 (1.06 nm), Ag-147 (1.60 nm), Ag-309 (2.14 nm), and Ag-561 (2.68 nm). The simulation method combines the adiabatic GLLB-SC exchange-correlation functional with real time propagation in an atomic orbital basis set using the projector-augmented wave method. The method has been implemented for the electron structure code GPAW within the scope of this work. We obtain good agreement with experimental data and modeled results, including photoemission and plasmon resonance. Moreover, we can extrapolate the ab initio results to the classical quasistatically modeled icosahedral clusters.


Journal of Chemical Physics | 2009

All-electron density functional theory and time-dependent density functional theory with high-order finite elements

Lauri Lehtovaara; Ville Havu; Martti J. Puska

We present for static density functional theory and time-dependent density functional theory calculations an all-electron method which employs high-order hierarchical finite-element bases. Our mesh generation scheme, in which structured atomic meshes are merged to an unstructured molecular mesh, allows a highly nonuniform discretization of the space. Thus it is possible to represent the core and valence states using the same discretization scheme, i.e., no pseudopotentials or similar treatments are required. The nonuniform discretization also allows the use of large simulation cells, and therefore avoids any boundary effects.

Collaboration


Dive into the Lauri Lehtovaara's collaboration.

Top Co-Authors

Avatar

Hannu Häkkinen

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar

Sami Malola

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar

Jussi Eloranta

California State University

View shared research outputs
Top Co-Authors

Avatar

Martti J. Puska

Helsinki University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ville Havu

Helsinki University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge