Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauri Saag is active.

Publication


Featured researches published by Lauri Saag.


Molecular Ecology | 2013

Towards a unified paradigm for sequence‐based identification of fungi

Urmas Kõljalg; R. Henrik Nilsson; Kessy Abarenkov; Leho Tedersoo; Andy F. S. Taylor; Mohammad Bahram; Scott T. Bates; Thomas D. Bruns; Johan Bengtsson-Palme; Tony M. Callaghan; Brian Douglas; Tiia Drenkhan; Ursula Eberhardt; Margarita Dueñas; Tine Grebenc; Gareth W. Griffith; Martin Hartmann; Paul M. Kirk; Petr Kohout; Ellen Larsson; Björn D. Lindahl; Robert Lücking; María P. Martín; P. Brandon Matheny; Nhu H. Nguyen; Tuula Niskanen; Jane Oja; Kabir G. Peay; Ursula Peintner; Marko Peterson

The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite.ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|SH133781.05FU), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third‐party annotation effort. We introduce the term ‘species hypothesis’ (SH) for the taxa discovered in clustering on different similarity thresholds (97–99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released (http://unite.ut.ee/repository.php) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web‐based sequence management system in UNITE.


Nature | 2014

The genome of a Late Pleistocene human from a Clovis burial site in western Montana

Morten Rasmussen; Sarah L. Anzick; Michael R. Waters; Pontus Skoglund; Michael DeGiorgio; Thomas W. Stafford; Simon Rasmussen; Ida Moltke; Anders Albrechtsen; Shane M Doyle; G. David Poznik; Valborg Gudmundsdottir; Rachita Yadav; Anna-Sapfo Malaspinas; Samuel Stockton White; Morten E. Allentoft; Omar E. Cornejo; Kristiina Tambets; Anders Eriksson; Peter D. Heintzman; Monika Karmin; Thorfinn Sand Korneliussen; David J. Meltzer; Tracey Pierre; Jesper Stenderup; Lauri Saag; Vera Warmuth; Margarida Cabrita Lopes; Ripan S. Malhi; Søren Brunak

Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 14C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 14C years bp (approximately 12,707–12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal’ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.


Genome Research | 2015

A recent bottleneck of Y chromosome diversity coincides with a global change in culture

Monika Karmin; Lauri Saag; Mário Vicente; Melissa A. Wilson Sayres; Mari Järve; Ulvi Gerst Talas; Siiri Rootsi; Anne-Mai Ilumäe; Reedik Mägi; Mario Mitt; Luca Pagani; Tarmo Puurand; Zuzana Faltyskova; Florian Clemente; Alexia Cardona; Ene Metspalu; Hovhannes Sahakyan; Bayazit Yunusbayev; Georgi Hudjashov; Michael DeGiorgio; Eva-Liis Loogväli; Christina A. Eichstaedt; Mikk Eelmets; Gyaneshwer Chaubey; Kristiina Tambets; S. S. Litvinov; Maru Mormina; Yali Xue; Qasim Ayub; Grigor Zoraqi

It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.


Nature | 2016

Genomic analyses inform on migration events during the peopling of Eurasia

Luca Pagani; Daniel John Lawson; Evelyn Jagoda; Alexander Mörseburg; Anders Eriksson; Mario Mitt; Florian Clemente; Georgi Hudjashov; Michael DeGiorgio; Lauri Saag; Jeffrey D. Wall; Alexia Cardona; Reedik Mägi; Melissa A. Wilson Sayres; Sarah Kaewert; Charlotte E. Inchley; Christiana L. Scheib; Mari Järve; Monika Karmin; Guy S. Jacobs; Tiago Antao; Florin Mircea Iliescu; Alena Kushniarevich; Qasim Ayub; Chris Tyler-Smith; Yali Xue; Bayazit Yunusbayev; Kristiina Tambets; Chandana Basu Mallick; Lehti Saag

High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.


New Phytologist | 2015

Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi.

Pradeep K. Divakar; Ana Crespo; Mats Wedin; Steven D. Leavitt; David L. Hawksworth; Leena Myllys; Bruce McCune; Tiina Randlane; Jarle W. Bjerke; Yoshihito Ohmura; Imke Schmitt; Carlos G. Boluda; David Alors; Beatriz Roca-Valiente; Ruth Del-Prado; Constantino Ruibal; Kawinnat Buaruang; Jano Núñez-Zapata; Guillermo Amo de Paz; Víctor J. Rico; M. Carmen Molina; John A. Elix; Theodore L. Esslinger; Inger Kristin K. Tronstad; Hanna Lindgren; Damien Ertz; Cécile Gueidan; Lauri Saag; Kristiina Mark; Garima Singh

We studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota), one of the largest families of lichen-forming fungi with complex and variable morphologies, also including several lichenicolous fungi. We assembled a six-locus data set including nuclear, mitochondrial and low-copy protein-coding genes from 293 operational taxonomic units (OTUs). The lichenicolous lifestyle originated independently three times in lichenized ancestors within Parmeliaceae, and a new generic name is introduced for one of these fungi. In all cases, the independent origins occurred c. 24 million yr ago. Further, we show that the Paleocene, Eocene and Oligocene were key periods when diversification of major lineages within Parmeliaceae occurred, with subsequent radiations occurring primarily during the Oligocene and Miocene. Our phylogenetic hypothesis supports the independent origin of lichenicolous fungi associated with climatic shifts at the Oligocene-Miocene boundary. Moreover, diversification bursts at different times may be crucial factors driving the diversification of Parmeliaceae. Additionally, our study provides novel insight into evolutionary relationships in this large and diverse family of lichen-forming ascomycetes.


Lichenologist | 2009

World survey of the genus Lepraria ( Stereocaulaceae , lichenized Ascomycota)

Lauri Saag; Andres Saag; Tiina Randlane

A comparative review of 57Lepraria species and 2 varieties is provided together with species descriptions and a key. Lecanora leuckertiana is transferred to Lepraria. In addition some putative taxa by different authors are discussed. ducing anthraquinones to Caloplaca Th. Fr. and Leproplaca (Nyl.) Nyl. ex Hue (a current synonym of Caloplaca) and species contain- ing pulvinic acid derivatives to Chrysothrix Mont. The number of species in Lepraria was further reduced when taxa producing dibenzofuranes were placed in Leproloma Nyl. ex Cromb. (Laundon 1989; Leuckert & Kummerling 1991). The concept of the


Scientific Reports | 2016

Selective sweep on human amylase genes postdates the split with Neanderthals

Charlotte E. Inchley; Cynthia D. A. Larbey; Nzar A.A. Shwan; Luca Pagani; Lauri Saag; Tiago Antao; Guy S. Jacobs; Georgi Hudjashov; Ene Metspalu; Mario Mitt; Christina A. Eichstaedt; B. A. Malyarchuk; Miroslava Derenko; Joseph Wee; Syafiq Abdullah; François-Xavier Ricaut; Maru Mormina; Reedik Mägi; Richard Villems; Mait Metspalu; Martin Jones; John A.L. Armour; Toomas Kivisild

Humans have more copies of amylase genes than other primates. It is still poorly understood, however, when the copy number expansion occurred and whether its spread was enhanced by selection. Here we assess amylase copy numbers in a global sample of 480 high coverage genomes and find that regions flanking the amylase locus show notable depression of genetic diversity both in African and non-African populations. Analysis of genetic variation in these regions supports the model of an early selective sweep in the human lineage after the split of humans from Neanderthals which led to the fixation of multiple copies of AMY1 in place of a single copy. We find evidence of multiple secondary losses of copy number with the highest frequency (52%) of a deletion of AMY2A and associated low copy number of AMY1 in Northeast Siberian populations whose diet has been low in starch content.


Lichenologist | 2011

Phylogenetic relations of European shrubby taxa of the genus Usnea

Lauri Saag; Tiiu Tõrra; Andres Saag; Ruth Del-Prado; Tiina Randlane

This study focuses on European Usnea species with sorediate shrubby thalli, with the aim to evaluate the morphological and chemical separation of species in the light of molecular data. Twenty-two Usnea species, including widely distributed taxa such as U. diplotypus, U. fulvoreagens, U. glabrescens, U. lapponica, U. subfloridana, U. substerilis and U. wasmuthii, were included in the study using Bayesian and maximum parsimony analyses of nuclear ITS and beta-tubulin sequences. The analyses showed that: 1) most taxa that are morphologically well delimited are also distinct by means of molecular characters, 2) shrubby taxa in the section Usnea that are difficult to determine by traditional characters form a group of closely related but still genetically distinct entities, except U. diplotypus and U. substerilis which appear to be polyphyletic. The branch lengths differed largely between two parts of the ITS tree (sections Usnea and Ceratinae). Usnea intermedia is proposed as the sexually reproducing counterpart for the sorediate U. lapponica. Additionally, some new chemotypes of Usnea species were determined.


American Journal of Botany | 2014

Species delimitation in the lichenized fungal genus Vulpicida (Parmeliaceae, Ascomycota) using gene concatenation and coalescent-based species tree approaches.

Lauri Saag; Kristiina Mark; Andres Saag; Tiina Randlane

UNLABELLED • PREMISE OF THE STUDY Species boundaries in many organism groups are still in a state of flux, and for empirical species delimitation, finding appropriate character sets and analytical tools are among the greatest challenges. In the lichenized fungal genus Vulpicida, six morphologically circumscribed species have been distinguished, but phenotypic characters partly overlap for three of these and intermediate forms occur. We used a combination of phylogenetic strategies to delimit the species in this genus.• METHODS Five DNA loci were sequenced and analyzed. Single-locus gene trees and a five-locus concatenated phylogeny were constructed to assess current Vulpicida species. Species boundaries were inferred from molecular data using two coalescent-based species delimitation methods (BP&P and Brownie) and from species trees reconstructed with three different algorithms (*BEAST, BEST, and STEM).• KEY RESULTS The two species restricted to North America, Vulpicida canadensis and V. viridis, are clearly distinct in all analyses. The four other traditionally accepted species form two strongly supported, closely related species-level lineages within the core group of the genus. On the basis of these results, we propose four instead of the current six species in the genus: V. canadensis, V. juniperinus, V. pinastri, and V. viridis, while V. tilesii and V. tubulosus are reduced to synonymy under V. juniperinus.• CONCLUSIONS Coalescent species delimitation and tree inference give consistent results for fully distinct Vulpicida species but not for diverging populations. Even the inconsistent results were informative, revealing developing isolation despite a complex history of recombination and incomplete lineage sorting.


Organisms Diversity & Evolution | 2016

Erratum to: Evaluation of traditionally circumscribed species in the lichen-forming genus Usnea , section Usnea (Parmeliaceae, Ascomycota) using a six-locus dataset

Kristiina Mark; Lauri Saag; Steven D. Leavitt; Susan Will-Wolf; Matthew P. Nelsen; Tiiu Tõrra; Andres Saag; Tiina Randlane; H. Thorsten Lumbsch

The MycoBank code of the newly described species Usnea parafloridana was missing. The MycoBank code for the species Usnea parafloridana should read: MB818694. Usnea parafloridana K. Mark, Will-Wolf & Randlane sp. nov.; MycoBank No. MB818694. Type: USA, Wisconsin, Vilas Co., Trout Lake Conifer Swamp State Natural Area; 46.0135° N, -89.6586° W; 27.08.2011, Susan Will-Wolf WW14807: isolates WW_018 (holotype, TU; Fig. 4a, c, e), WW_023 (isotype 1, WIS), WW_013 (isotype 2, F). Morphology: thallus shrubby, up to 3–6 cm long, often with relatively few branches; branching mainly isotomic-dichotomous, divergent; lateral branches not narrowed at point of attachment; basal part distinctly jet black, with few annular cracks; papillae verrucose, numerous on main branches and lesser or absent on lateral branches; fibrils few to numerous; soralia small and punctiform when young, enlarging, becoming close to each other but usually staying delimited when mature, more numerous on terminal branches; isidiomorphs numerous, spinulose, relatively short and thick, both on young and mature soralia; cortex thick (9–15%); medulla thin (10.5– 13%), dense, not pigmented; central cord thick (60–73%) and white; apothecia not seen (Fig. 4; colour illustrations in online version). Secondary chemistry: usnic acid in cortex; norstictic acid as a major compound, salazinic acid as an accessory substance (present in most examined specimens) in medulla. Ecology: on branches of Abies balsamea, Larix laricina, Picea mariana, or Pinus strobus in cedar swamp, conifer bog and pine plantation with trees over one-hundred years old. Distribution: currently 15 specimens are known from four localities in Wisconsin, USA. Etymology: the species is morphologically somewhat similar to Usnea subfloridana (both taxa have similar shrubby thalli, black basal parts and delimited soralia with numerous isidiomorphs), which phylogenetically appears conspecific with U. florida. The same root ‘florida’ is used in the epithet of the new taxon to underline this morphological similarity while the prefix ‘para-‘ indicates phylogenetic distinctness of the species from U. florida and U. subfloridana. The online version of the original article can be found at http://dx.doi. org/10.1007/s13127-016-0273-7.

Collaboration


Dive into the Lauri Saag's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge