Laurie Boithias
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurie Boithias.
Science of The Total Environment | 2014
Laurie Boithias; Vicenç Acuña; Laura Vergoñós; Guy Ziv; Rafael Marcé; Sergi Sabater
Spatial differences in the supply and demand of ecosystem services such as water provisioning often imply that the demand for ecosystem services cannot be fulfilled at the local scale, but it can be fulfilled at larger scales (regional, continental). Differences in the supply:demand (S:D) ratio for a given service result in different values, and these differences might be assessed with monetary or non-monetary metrics. Water scarcity occurs where and when water resources are not enough to meet all the demands, and this affects equally the service of water provisioning and the ecosystem needs. In this study we assess the value of water in a Mediterranean basin under different global change (i.e. both climate and anthropogenic changes) and mitigation scenarios, with a non-monetary metric: the S:D ratio. We computed water balances across the Ebro basin (North-East Spain) with the spatially explicit InVEST model. We highlight the spatial and temporal mismatches existing across a single hydrological basin regarding water provisioning and its consumption, considering or not, the environmental demand (environmental flow). The study shows that water scarcity is commonly a local issue (sub-basin to region), but that all demands are met at the largest considered spatial scale (basin). This was not the case in the worst-case scenario (increasing demands and decreasing supply), as the S:D ratio at the basin scale was near 1, indicating that serious problems of water scarcity might occur in the near future even at the basin scale. The analysis of possible mitigation scenarios reveals that the impact of global change may be counteracted by the decrease of irrigated areas. Furthermore, the comparison between a non-monetary (S:D ratio) and a monetary (water price) valuation metrics reveals that the S:D ratio provides similar values and might be therefore used as a spatially explicit metric to valuate the ecosystem service water provisioning.
Journal of Hazardous Materials | 2011
Laurie Boithias; Sabine Sauvage; Lobat Taghavi; Georges Merlina; Jean-Luc Probst; José Sánchez Pérez
Rising pesticide levels in streams draining intensively managed agricultural land have a detrimental effect on aquatic ecosystems and render water unfit for human consumption. The Soil and Water Assessment Tool (SWAT) was applied to simulate daily pesticide transfer at the outlet from an agriculturally intensive catchment of 1110 km(2) (Save river, south-western France). SWAT reliably simulated both dissolved and sorbed metolachlor and trifluralin loads and concentrations at the catchment outlet from 1998 to 2009. On average, 17 kg of metolachlor and 1 kg of trifluralin were exported at outlet each year, with annual rainfall variations considered. Surface runoff was identified as the preferred pathway for pesticide transfer, related to the good correlation between suspended sediment exportation and pesticide, in both soluble and sorbed phases. Pesticide exportation rates at catchment outlet were less than 0.1% of the applied amount. At outlet, SWAT hindcasted that (i) 61% of metolachlor and 52% of trifluralin were exported during high flows and (ii) metolachlor and trifluralin concentrations exceeded European drinking water standards of 0.1 μg L(-1) for individual pesticides during 149 (3.6%) and 17 (0.4%) days of the 1998-2009 period respectively. SWAT was shown to be a promising tool for assessing large catchment river network pesticide contamination in the event of floods but further useful developments of pesticide transfers and partition coefficient processes would need to be investigated.
Science of The Total Environment | 2016
Laurie Boithias; Marta Terrado; Lluís Corominas; Guy Ziv; Vikas Kumar; Montse Marquès; Marta Schuhmacher; Vicenç Acuña
Ecosystem services provide multiple benefits to human wellbeing and are increasingly considered by policy-makers in environmental management. However, the uncertainty related with the monetary valuation of these benefits is not yet adequately defined or integrated by policy-makers. Given this background, our aim was to quantify different sources of uncertainty when performing monetary valuation of ecosystem services, in order to provide a series of guidelines to reduce them. With an example of 4 ecosystem services (i.e., water provisioning, waste treatment, erosion protection, and habitat for species) provided at the river basin scale, we quantified the uncertainty associated with the following sources: (1) the number of services considered, (2) the number of benefits considered for each service, (3) the valuation metrics (i.e. valuation methods) used to value benefits, and (4) the uncertainty of the parameters included in the valuation metrics. Results indicate that the highest uncertainty was caused by the number of services considered, as well as by the number of benefits considered for each service, whereas the parametric uncertainty was similar to the one related to the selection of valuation metric, thus suggesting that the parametric uncertainty, which is the only uncertainty type commonly considered, was less critical than the structural uncertainty, which is in turn mainly dependent on the decision-making context. Given the uncertainty associated to the valuation structure, special attention should be given to the selection of services, benefits and metrics according to a given context.
Chemosphere | 2014
Laurie Boithias; Sabine Sauvage; Georges Merlina; Séverine Jean; Jean-Luc Probst; José Sánchez Pérez
Pesticides applied on crops are leached with rainfall to groundwater and surface water. They threat the aquatic environment and may render water unfit for human consumption. Pesticide partitioning is one of the pesticide fate processes in the environment that should be properly formalised in pesticide fate models. Based on the analysis of 7 pesticide molecules (alachlor, atrazine, atrazines transformation product deethylatrazine or DEA, isoproturon, tebuconazole and trifluralin) sampled from July 2009 to October 2010 at the outlet of the river Save (south-western France), the objectives of this study were (1) to check which of the environmental factors (discharge, pH, concentrations of total suspended matter (TSM), dissolved organic carbon (DOC) and particulate organic carbon (POC) could control the pesticide sorption dynamic, and (2) to establish a relationship between environmental factors, the partition coefficient Kd and the octanol/water distribution coefficient Kow. The comparison of physico-chemical parameters values during low flow and high flow shows that discharge, TSM and POC are the factors most likely controlling the pesticide sorption processes in the Save river network, especially for lower values of TSM (below 13mgL(-1)). We therefore express Kd depending on the widely literature-related variable Kow and on the commonly simulated variable TSM concentration. The equation can be implemented in any model describing the fluvial transport and fate of pesticides in both dissolved and sorbed phases, thus, Kd becomes a variable in time and space. The Kd calculation method can be applied to a wide range of catchments and organic contaminants.
Journal of Applied Ecology | 2016
Marta Terrado; Andrea Momblanch; Mònica Bardina; Laurie Boithias; Antoni Munné; Sergi Sabater; Abel Solera; Vicenç Acuña
Summary According to the European Union Water Framework Directive, river basin management plans must include a programme of measures, with a series of management actions aiming to achieve good ecosystem status of all water bodies within the basin. The design and later prioritization of these management actions is, in theory, done through cost-effectiveness analysis (CEA), which compares management action costs with expected improvements in ecosystem status. However, such an approach does not consider the effects of management actions on human well-being resulting from changes in the provision of ecosystem services. We propose to complement the current CEA approach with a cost–benefit analysis (CBA) integrating the effects of management actions on the provision of ecosystem services, therefore moving from a single-objective to a multiobjective approach. We propose a flexible methodological framework based on a combination of CEA and CBA that can be easily adapted to different case studies. To test the applicability of our approach, we applied it to an impaired basin, the Llobregat River basin (north-eastern Iberian Peninsula). The analysis considers management actions selected from the programme of measures under implementation: establishment of environmental river flows, improvement of river connectivity, treatment of urban wastewater and reduction in saline pollution; and the effects on a series of ecosystem services: water provisioning, waste treatment and habitat for species. Results revealed that management actions designed to improve ecosystem status do not necessarily improve human well-being through changes in the provision of ecosystem services. The implementation of the CEA and CBA allowed the identification of management actions providing the best trade-offs between improvements of ecosystem status and human well-being. For example, the establishment of environmental river flows in the upper Llobregat River was the management action that maximized the balance between gains in ecosystem status and human well-being. Synthesis and applications. Overall, the combination of cost-effectiveness analysis and cost–benefit analysis supports a more informed and transparent decision-making in the implementation of river basin management plans, better assisting stakeholders to prioritize those management actions providing the optimal win–win results.
Scientific Reports | 2016
Emma Rochelle-Newall; Olivier Ribolzi; Marion Viguier; Chanthamousone Thammahacksa; Norbert Silvera; Keooudone Latsachack; Rinh Pham Dinh; Piyapong Naporn; Hai Tran Sy; B. Soulileuth; Nikom Hmaimum; Pem Sisouvanh; Henri Robain; Jean-Louis Janeau; Christian Valentin; Laurie Boithias; Alain Pierret
Lack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E. coli concentrations in streamwater and that the relative importance of these two factors varies between the dry and wet seasons. In all three catchments, the highest concentrations were observed during the wet season when storm events and overland flow were highest. However, smaller peaks of E. coli concentration were also observed during the dry season. These latter correspond to periods of intense farming activities and small, episodic rain events. Furthermore, vegetation type, through land use and soil surface crusting, combined with mammalian presence play an important role in determining E. coli loads in the streams. Finally, sampling during stormflow revealed the importance of having appropriate sampling protocols if information on maximum contamination levels is required as grab sampling at a fixed time step may miss important peaks in E. coli numbers.
PLOS Neglected Tropical Diseases | 2016
Laurie Boithias; Marc Choisy; Noy Souliyaseng; Marine Jourdren; Yves Buisson; Chanthamousone Thammahacksa; Norbert Silvera; Keooudone Latsachack; Oloth Sengtaheuanghoung; Alain Pierret; Emma Rochelle-Newall; Sylvia Becerra; Olivier Ribolzi
Background The global burden of diarrhea is a leading cause of morbidity and mortality worldwide. In montane areas of South-East Asia such as northern Laos, recent changes in land use have induced increased runoff, soil erosion and in-stream suspended sediment loads, and potential pathogen dissemination. To our knowledge, few studies have related diarrhea incidences to catchment scale hydrological factors such as river discharge, and loads of suspended sediment and of Fecal Indicator Bacteria (FIB) such as Escherichia coli, together with sociological factors such as hygiene practices. We hypothesized that climate factors combined with human behavior control diarrhea incidence, either because higher rainfall, leading to higher stream discharges, suspended sediment loads and FIB counts, are associated with higher numbers of reported diarrhea cases during the rainy season, or because water shortage leads to the use of less safe water sources during the dry season. Using E. coli as a FIB, the objectives of this study were thus (1) to characterize the epidemiological dynamics of diarrhea in Northern Laos, and (2) to identify which hydro-meteorological and sociological risk factors were associated with diarrhea epidemics. Methods Considering two unconnected river catchments of 22 and 7,448 km2, respectively, we conducted a retrospective time series analysis of meteorological variables (rainfall, air temperature), hydrological variables (discharge, suspended sediments, FIB counts, water temperature), and the number of diarrheal disease cases reported at 6 health centers located in the 5 southern districts of the Luang Prabang Province, Lao PDR. We also examined the socio-demographic factors potentially affecting vulnerability to the effect of the climate factors, such as drinking water sources, hygiene habits, and recreational water exposure. Results Using thus a mixed methods approach, we found E. coli to be present all year long (100–1,000 Most Probable Number or MPN 100 mL-1) indicating that fecal contamination is ubiquitous and constant. We found that populations switch their water supply from wells to surface water during drought periods, the latter of which appear to be at higher risk of bacterial contamination than municipal water fountains. We thus found that water shortage in the Luang Prabang area triggers diarrhea peaks during the dry and hot season and that rainfall and aquifer refill ends the epidemic during the wet season. The temporal trends of reported daily diarrhea cases were generally bimodal with hospital admissions peaking in February-March and later in May-July. Annual incidence rates were higher in more densely populated areas and mostly concerned the 0–4 age group and male patients. Conclusions We found that anthropogenic drivers, such as hygiene practices, were at least as important as environmental drivers in determining the seasonal pattern of a diarrhea epidemic. For diarrheal disease risk monitoring, discharge or groundwater level can be considered as relevant proxies. These variables should be monitored in the framework of an early warning system provided that a tradeoff is found between the size of the monitored catchment and the frequency of the measurement.
Experimental Agriculture | 2012
Laurie Boithias; Frederic C. Do; S. Isarangkool Na Ayutthaya; Junya Junjittakarn; S. Siltecho; Claude Hammecker
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Transpiration, growth and latex production of a Hevea brasiliensis stand facing drought in Northeast Thailand : the use of the WaNuLCAS model as an exploratory tool Laurie Boithias, Frederic Do, Supat Isarangkool Na Ayutthaya, Junyia Junjittakarn, S. Siltecho, Claude Hammecker
Science of The Total Environment | 2018
D. Archundia; Laurie Boithias; Céline Duwig; M.-C. Morel; G. Flores Aviles; Jean M. F. Martins
Abstract Antibiotics are emergent contaminants that can induce adverse effects in terrestrial and aquatic organisms. The surface water compartment is of particular concern as it receives direct waste water discharge. Modeling is highlighted as an essential tool to understand the fate and behavior of these compounds and to assess their ecotoxicological risk. This study aims at testing the ability of the GREAT-ER model in simulating sulfamethoxazole (SMX) concentrations in the surface waters of the arid high-altitude Katari catchment (Bolivian Altiplano), assessing the sensitivity of the parameters considered, and evaluating the ecotoxicological risk posed. The model predicted the general spatial pattern of SMX concentrations. No contaminant abatement was observed during the wet season, supporting the idea that non-point sources, such as runoff and remobilization processes, play an important role during that season. During the dry season, the abatement capacity was 91%, suggesting that natural attenuation, particularly photodegradation, is high during low flow. Pharmaceutical consumption was the parameter that influenced the environmental concentrations the most. The ratio of Predicted Environmental Concentrations to predicted no-effect concentrations varied between 0.14 and 26.6 for the wet season and between 0.14 and 7.6 for the dry season depending on the river stretch.
Journal of Environmental Quality | 2018
Minjeong Kim; Laurie Boithias; Kyung Hwa Cho; Oloth Sengtaheuanghoung; Olivier Ribolzi
Land use change from annual crops to commercial tree plantations can modify flow and transport processes at the watershed scale, including the fate and transport of fecal indicator bacteria (FIB), such as . The Soil and Water Assessment Tool (SWAT) is a useful means for integrating watershed characteristics and simulating water and contaminants. The objective of this study was to provide a comprehensive assessment of the impact of land use change on microbial transfer from soils to streams using the SWAT model. This study was conducted for the Houay Pano watershed located in northern Lao Peoples Democratic Republic. Under the observed weather conditions, the SWAT model predicted a decrease from 2011 to 2012 and an increase from 2012 to 2013 in surface runoff, suspended solids, and transferred from the soil surface to streams. The amount of precipitation was important in simulating surface runoff, and it subsequently affected the fate and transport of suspended solids and bacteria. In simulations of identical weather conditions and different land uses, fate and transport was more sensitive to the initial number of than to its drivers (i.e., surface runoff and suspended solids), and leaf area index was a significant factor influencing the determination of the initial number of on the soil surface. On the basis of these findings, this study identifies several limitations of the SWAT fertilizer and bacteria modules and suggests measures to improve our understanding of the impacts of land use change on FIB in tropical watersheds.