Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurie H. Glimcher is active.

Publication


Featured researches published by Laurie H. Glimcher.


Cell | 2000

A novel transcription factor, T-bet, directs Th1 lineage commitment.

Susanne J. Szabo; Sean T. Kim; Gina L. Costa; Xiankui Zhang; C. Garrison Fathman; Laurie H. Glimcher

Naive T helper cells differentiate into two subsets, Th1 and Th2, each with distinct functions and cytokine profiles. Here, we report the isolation of T-bet, a Th1-specific T box transcription factor that controls the expression of the hallmark Th1 cytokine, IFNgamma. T-bet expression correlates with IFNgamma expression in Th1 and NK cells. Ectopic expression of T-bet both transactivates the IFNgamma gene and induces endogenous IFNgamma production. Remarkably, retroviral gene transduction of T-bet into polarized Th2 and Tc2 primary T cells redirects them into Th1 and Tc1 cells, respectively, as evidenced by the simultaneous induction of IFNgamma and repression of IL-4 and IL-5. Thus, T-bet initiates Th1 lineage development from naive Thp cells both by activating Th1 genetic programs and by repressing the opposing Th2 programs.


Cell | 1995

B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: Application to autoimmune disease therapy

Vijay K. Kuchroo; Mercy Prabhu Das; Julia Brown; Ann M. Ranger; Scott S. Zamvil; Raymond A. Sobel; Howard L. Weiner; Nasrin Nabavi; Laurie H. Glimcher

CD4 T helper precursor cells mature along two alternative pathways, Th1 and Th2. Here we show that these pathways are differentially activated by two costimulatory molecules, B7-1 and B7-2. Using anti-B7 antibodies, this developmental step was manipulated both in vitro and in vivo in experimental allergic encephalomyelitis (EAE). Anti-B7-1 reduced the incidence of disease while anti-B7-2 increased disease severity. Neither antibody affected overall T cell induction but rather altered cytokine profile. Administration of anti-B7-1 at immunization resulted in predominant generation of Th2 clones whose transfer both prevented induction of EAE and abrogated established disease. Since co-treatment with anti-IL-4 antibody prevented disease amelioration, costimulatory molecules may directly affect initial cytokine secretion. Thus, interaction of B7-1 and B7-2 with shared counterreceptors CD28 and CTLA-4 results in very different outcomes in clinical disease by influencing commitment of precursors to a Th1 or Th2 lineage.


Molecular and Cellular Biology | 2003

XBP-1 Regulates a Subset of Endoplasmic Reticulum Resident Chaperone Genes in the Unfolded Protein Response

Ann-Hwee Lee; Neal N. Iwakoshi; Laurie H. Glimcher

ABSTRACT The mammalian unfolded protein response (UPR) protects the cell against the stress of misfolded proteins in the endoplasmic reticulum (ER). We have investigated here the contribution of the UPR transcription factors XBP-1, ATF6α, and ATF6β to UPR target gene expression. Gene profiling of cell lines lacking these factors yielded several XBP-1-dependent UPR target genes, all of which appear to act in the ER. These included the DnaJ/Hsp40-like genes, p58IPK, ERdj4, and HEDJ, as well as EDEM, protein disulfide isomerase-P5, and ribosome-associated membrane protein 4 (RAMP4), whereas expression of BiP was only modestly dependent on XBP-1. Surprisingly, given previous reports that enforced expression of ATF6α induced a subset of UPR target genes, cells deficient in ATF6α, ATF6β, or both had minimal defects in upregulating UPR target genes by gene profiling analysis, suggesting the presence of compensatory mechanism(s) for ATF6 in the UPR. Since cells lacking both XBP-1 and ATF6α had significantly impaired induction of select UPR target genes and ERSE reporter activation, XBP-1 and ATF6α may serve partially redundant functions. No UPR target genes that required ATF6β were identified, nor, in contrast to XBP-1 and ATF6α, did the activity of the UPRE or ERSE promoters require ATF6β, suggesting a minor role for it during the UPR. Collectively, these results suggest that the IRE1/XBP-1 pathway is required for efficient protein folding, maturation, and degradation in the ER and imply the existence of subsets of UPR target genes as defined by their dependence on XBP-1. Further, our observations suggest the existence of additional, as-yet-unknown, key regulators of the UPR.


Cell | 2008

XBP1 Links ER Stress to Intestinal Inflammation and Confers Genetic Risk for Human Inflammatory Bowel Disease

Arthur Kaser; Ann-Hwee Lee; Andre Franke; Jonathan N. Glickman; Sebastian Zeissig; Herbert Tilg; Edward E. S. Nieuwenhuis; Darren E. Higgins; Stefan Schreiber; Laurie H. Glimcher; Richard S. Blumberg

Inflammatory bowel disease (IBD) has been attributed to aberrant mucosal immunity to the intestinal microbiota. The transcription factor XBP1, a key component of the endoplasmic reticulum (ER) stress response, is required for development and maintenance of secretory cells and linked to JNK activation. We hypothesized that a stressful environmental milieu in a rapidly proliferating tissue might instigate a proinflammatory response. We report that Xbp1 deletion in intestinal epithelial cells (IECs) results in spontaneous enteritis and increased susceptibility to induced colitis secondary to both Paneth cell dysfunction and an epithelium that is overly reactive to inducers of IBD such as bacterial products (flagellin) and TNFalpha. An association of XBP1 variants with both forms of human IBD (Crohns disease and ulcerative colitis) was identified and replicated (rs35873774; p value 1.6 x 10(-5)) with novel, private hypomorphic variants identified as susceptibility factors. Hence, intestinal inflammation can originate solely from XBP1 abnormalities in IECs, thus linking cell-specific ER stress to the induction of organ-specific inflammation.


Nature Immunology | 2003

Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1

Neal N. Iwakoshi; Ann-Hwee Lee; Prasanth Vallabhajosyula; Kevin L. Otipoby; Klaus Rajewsky; Laurie H. Glimcher

The transcription factor X-box binding protein 1 (XBP-1) is essential for the differentiation of plasma cells and the unfolded protein response (UPR). Here we show that UPR-induced splicing of XBP-1 by the transmembrane endonuclease IRE1 is required to restore production of immunoglobulin in XBP-1−/− mouse B cells, providing an integral link between XBP-1, the UPR and plasma cell differentiation. Signals involved in plasma cell differentiation, specifically interleukin-4, control the transcription of XBP-1, whereas its post-transcriptional processing is dependent on synthesis of immunoglobulins during B cell differentiation. We also show that XBP-1 is involved in controlling the production of interleukin-6, a cytokine that is essential for plasma cell survival. Thus, signals upstream and downstream of XBP-1 integrate plasma cell differentiation with the UPR.


Cell | 2007

Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system.

Wendy S. Garrett; Graham M. Lord; Shivesh Punit; Geanncarlo Lugo-Villarino; Sarkis K. Mazmanian; Susumu Ito; Jonathan N. Glickman; Laurie H. Glimcher

Inflammatory bowel disease (IBD) has been attributed to overexuberant host immunity or the emergence of harmful intestinal flora. The transcription factor T-bet orchestrates inflammatory genetic programs in both adaptive and innate immunity. We describe a profound and unexpected function for T-bet in influencing the behavior of host inflammatory activity and commensal bacteria. T-bet deficiency in the innate immune system results in spontaneous and communicable ulcerative colitis in the absence of adaptive immunity and increased susceptibility to colitis in immunologically intact hosts. T-bet controls the response of the mucosal immune system to commensal bacteria by regulating TNF-alpha production in colonic dendritic cells, critical for colonic epithelial barrier maintenance. Loss of T-bet influences bacterial populations to become colitogenic, and this colitis is communicable to genetically intact hosts. These findings reveal a novel function for T-bet as a peacekeeper of host-commensal relationships and provide new perspectives on the pathophysiology of IBD.


Cell | 1993

Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice

Peter Mombaerts; Emiko Mizoguchi; Michael J. Grusby; Laurie H. Glimcher; Atul K. Bhan; Susumu Tonegawa

We describe the spontaneous development of inflammatory bowel disease (IBD) in several immunodeficient mouse strains created via gene targeting in embryonic stem cells. Chronic colitis was observed in T cell receptor (TCR) alpha mutant, TCR beta mutant, TCR beta x delta double mutant, or class II major histocompatibility complex (MHC) mutant mice, but not in recombination-activating gene RAG-1 mutant mice or nude mice kept in the same specific pathogen-free animal facility. This clinical pattern suggests that the disease requires the presence of B lymphocytes and the absence of class II MHC-restricted CD4+ alpha beta T cells. IBD in the mutant mice has some of the features of the human disease ulcerative colitis. Based on these results, we suggest that dysfunction of the mucosal immune system may underly the pathogenesis of some types of IBD in humans.


Cell | 1996

The Proto-Oncogene c-maf Is Responsible for Tissue-Specific Expression of Interleukin-4

I-Cheng Ho; Martin R. Hodge; John W. Rooney; Laurie H. Glimcher

The molecular basis for the distinctive cytokine expression of CD4+ T helper 1 (Th1) and T helper 2 (Th2) subsets remains elusive. Here, we report that the proto-oncogene c-maf, a basic region/leucine zipper transcription factor, controls tissue-specific expression of IL-4. c-Maf is expressed in Th2 but not Th1 clones and is induced during normal precursor cell differentiation along a Th2 but not Th1 lineage. c-Maf binds to a c-Maf response element (MARE) in the proximal IL-4 promoter adjacent to a site footprinted by extracts from Th2 but not Th1 clones. Ectopic expression of c-Maf transactivates the IL-4 promoter in Th1 cells, B cells, and nonlymphoid cells, a function that maps to the MARE and Th2-specific footprint. Furthermore, c-Maf acts in synergy with the nuclear factor of activated T cells (NF-ATp) to initiate endogeneous IL-4 production by B cells. Manipulation of c-Maf may alter Th subset ratios in human disease.


Science | 2008

Regulation of Hepatic Lipogenesis by the Transcription Factor XBP1

Ann-Hwee Lee; Erez F. Scapa; David E. Cohen; Laurie H. Glimcher

Dietary carbohydrates regulate hepatic lipogenesis by controlling the expression of critical enzymes in glycolytic and lipogenic pathways. We found that the transcription factor XBP1, a key regulator of the unfolded protein response, is required for the unrelated function of normal fatty acid synthesis in the liver. XBP1 protein expression in mice was elevated after feeding carbohydrates and corresponded with the induction of critical genes involved in fatty acid synthesis. Inducible, selective deletion of XBP1 in the liver resulted in marked hypocholesterolemia and hypotriglyceridemia, secondary to a decreased production of lipids from the liver. This phenotype was not accompanied by hepatic steatosis or compromise in protein secretory function. The identification of XBP1 as a regulator of lipogenesis has important implications for human dyslipidemias.


Science | 1991

Depletion of CD4+ T cells in major histocompatibility complex class II-deficient mice

Michael J. Grusby; Randall S. Johnson; Virginia E. Papaioannou; Laurie H. Glimcher

The maturation of T cells in the thymus is dependent on the expression of major histocompatibility complex (MHC) molecules. By disruption of the MHC class II Ab beta gene in embryonic stem cells, mice were generated that lack cell surface expression of class II molecules. These MHC class II-deficient mice were depleted of mature CD4+ T cells and were deficient in cell-mediated immune responses. These results provide genetic evidence that class II molecules are required for the maturation and function of mature CD4+ T cells.

Collaboration


Dive into the Laurie H. Glimcher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I-Cheng Ho

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge