Laurie J. Minze
Houston Methodist Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laurie J. Minze.
The FASEB Journal | 2012
Bingyan Guo; Somik Chatterjee; Lifei Li; Ji M. Kim; Jeongkyung Lee; Vijay K. Yechoor; Laurie J. Minze; Willa A. Hsueh; Ke Ma
Circadian clocks in adipose tissue are known to regulate adipocyte biology. Although circadian dysregulation is associated with development of obesity, the underlying mechanism has not been established. Here we report that disruption of the clock gene, brain and muscle Arnt‐like 1 (Bmal1), in mice led to increased adipogenesis, adipocyte hypertrophy, and obesity, compared to wild‐type (WT) mice. This is due to its cell‐autonomous effect, as Bmal1 deficiency in embryonic fibroblasts, as well as stable shRNA knockdown (KD) in 3T3‐L1 preadipocyte and C3H10T1/2 mesenchymal stem cells, promoted adipogenic differentiation. We demonstrate that attenuation of Bmal1 function resulted in down‐regulation of genes in the canonical Wnt pathway, known to suppress adipogenesis. Promoters of these genes (Wnt10a, β‐catenin, Dishevelled2, TCF3) displayed Bmal1 occupancy, indicating direct circadian regulation by Bmal1. As a result, Wnt signaling activity was attenuated by Bmal1 KD and augmented by its overexpression. Furthermore, stabilizing β‐catenin through Wnt ligand or GSK‐3β inhibition achieved partial restoration of blunted Wnt activity and suppression of increased adipogenesis induced by Bmal1 KD. Taken together, our study demonstrates that Bmal1 is a critical negative regulator of adipocyte development through transcriptional control of components of the canonical Wnt signaling cascade, and provides a mechanistic link between circadian disruption and obesity.—Guo, B., Chatterjee, S., Li, L., Kim, J. M., Lee, J., Yechoor, V. K., Minze, L. J., Hsueh, W., Ma, K. The clock gene, brain and muscle Arnt‐like 1, regulates adipogenesis via Wnt signaling pathway. FASEB J. 26, 3453–3463 (2012). www.fasebj.org
Endocrinology | 2014
Anisha A. Gupte; Omaima M. Sabek; Daniel Fraga; Laurie J. Minze; Satoru K. Nishimoto; Joey Z. Liu; Solmaz F. Afshar; Lillian W. Gaber; Christopher J. Lyon; A. Osama Gaber; Willa A. Hsueh
Nonalcoholic fatty liver disease, particularly its more aggressive form, nonalcoholic steatohepatitis (NASH), is associated with hepatic insulin resistance. Osteocalcin, a protein secreted by osteoblast cells in bone, has recently emerged as an important metabolic regulator with insulin-sensitizing properties. In humans, osteocalcin levels are inversely associated with liver disease. We thus hypothesized that osteocalcin may attenuate NASH and examined the effects of osteocalcin treatment in middle-aged (12-mo-old) male Ldlr(-/-) mice, which were fed a Western-style high-fat, high-cholesterol diet for 12 weeks to induce metabolic syndrome and NASH. Mice were treated with osteocalcin (4.5 ng/h) or vehicle for the diet duration. Osteocalcin treatment not only protected against Western-style high-fat, high-cholesterol diet-induced insulin resistance but substantially reduced multiple NASH components, including steatosis, ballooning degeneration, and fibrosis, with an overall reduction in nonalcoholic fatty liver disease activity scores. Further, osteocalcin robustly reduced expression of proinflammatory and profibrotic genes (Cd68, Mcp1, Spp1, and Col1a2) in liver and suppressed inflammatory gene expression in white adipose tissue. In conclusion, these results suggest osteocalcin inhibits NASH development by targeting inflammatory and fibrotic processes.
Journal of Visualized Experiments | 2012
Xukui Wang; Laurie J. Minze; Zheng Zheng Shi
Brown adipose tissue (BAT) differs from white adipose tissue (WAT) by its discrete location and a brown-red color due to rich vascularization and high density of mitochondria. BAT plays a major role in energy expenditure and non-shivering thermogenesis in newborn mammals as well as the adults (1). BAT-mediated thermogenesis is highly regulated by the sympathetic nervous system, predominantly via β adrenergic receptor (2, 3). Recent studies have shown that BAT activities in human adults are negatively correlated with body mass index (BMI) and other diabetic parameters (4-6). BAT has thus been proposed as a potential target for anti-obesity/anti-diabetes therapy focusing on modulation of energy balance (6-8). While several cold challenge-based positron emission tomography (PET) methods are established for detecting human BAT (9-13), there is essentially no standardized protocol for imaging and quantification of BAT in small animal models such as mice. Here we describe a robust PET/CT imaging method for functional assessment of BAT in mice. Briefly, adult C57BL/6J mice were cold treated under fasting conditions for a duration of 4 hours before they received one dose of (18)F-Fluorodeoxyglucose (FDG). The mice were remained in the cold for one additional hour post FDG injection, and then scanned with a small animal-dedicated micro-PET/CT system. The acquired PET images were co-registered with the CT images for anatomical references and analyzed for FDG uptake in the interscapular BAT area to present BAT activity. This standardized cold-treatment and imaging protocol has been validated through testing BAT activities during pharmacological interventions, for example, the suppressed BAT activation by the treatment of β-adrenoceptor antagonist propranolol (14, 15), or the enhanced BAT activation by β3 agonist BRL37344 (16). The method described here can be applied to screen for drugs/compounds that modulate BAT activity, or to identify genes/pathways that are involved in BAT development and regulation in various preclinical and basic studies.
Experimental Cell Research | 2016
Yianzhu Liu; Laurie J. Minze; Lindsay Mumma; Xian C. Li; Rafik M. Ghobrial; Malgorzata Kloc
The macrophages have different subtypes with different functions in immune response and disease. It has been generally accepted that M1 macrophages are responsible for stimulation of immune system and inflammation while M2 macrophages play a role in tissue repair. Irrespective of the type, macrophage functions depend on actin cytoskeleton, which is under the control of small GTPase RhoA pathway and its downstream effector ROCK1. We generated RhoA-deleted macrophages and compared the effect of RhoA deletion on M0, M1 and M2 macrophage phenotype. Our studies showed that, unexpectedly, the RhoA deletion did not eliminate macrophage ROCK1 expression and increased ROCK1 activity. The RhoA deletion effect on macrophage phenotype, structure and polarity was different for each subtype. Moreover, our study indicates that the up-regulation of ROCK1 activity in RhoA-deleted macrophages and macrophage phenotype/polarity are dependent on non-apoptotic Caspase-3 and are sensitive to Caspase-3 inhibition. These novel findings will revise/complement our understanding of RhoA pathway regulation of cell structure and polarity.
Physiological Reports | 2016
Dale J. Hamilton; Laurie J. Minze; Tanvi Kumar; Tram N. Cao; Christopher J. Lyon; Paige C. Geiger; Willa A. Hsueh; Anisha A. Gupte
Estrogen impacts insulin action and cardiac metabolism, and menopause dramatically increases cardiometabolic risk in women. However, the mechanism(s) of cardiometabolic protection by estrogen remain incompletely understood. Here, we tested the effects of selective activation of E2 receptor alpha (ERα) on systemic metabolism, insulin action, and cardiac mitochondrial function in a mouse model of metabolic dysfunction (ovariectomy [OVX], insulin resistance, hyperlipidemia, and advanced age). Middle‐aged (12‐month‐old) female low‐density lipoprotein receptor (Ldlr)−/− mice were subjected to OVX or sham surgery and fed “western” high‐fat diet (WHFD) for 3 months. Selective ERα activation with 4,4′,4″‐(4‐Propyl‐[1H]‐pyrazole‐1,3,5‐triyl) (PPT), prevented weight gain, improved insulin action, and reduced visceral fat accumulation in WHFD‐fed OVX mice. PPT treatment also elevated systemic metabolism, increasing oxygen consumption and core body temperature, induced expression of several metabolic genes such as peroxisome proliferator‐activated receptor gamma, coactivator 1 alpha, and nuclear respiratory factor 1 in heart, liver, skeletal muscle, and adipose tissue, and increased cardiac mitochondrial function. Taken together, selective activation of ERα with PPT enhances metabolic effects including insulin resistance, whole body energy metabolism, and mitochondrial function in OVX mice with metabolic syndrome.
Acta Physiologica | 2017
Silvania da Silva Teixeira; Carly S. Filgueira; Douglas H. Sieglaff; Cindy Benod; Rosa Villagomez; Laurie J. Minze; Aijun Zhang; Paul Webb; Maria Tereza Nunes
Thyroid hormones regulate metabolic response. While triiodothyronine (T3) is usually considered to be the active form of thyroid hormone, one form of diiodothyronine (3,5‐T2) exerts T3‐like effects on energy consumption and lipid metabolism. 3,5‐T2 also improves glucose tolerance in rats and 3,5‐T2 levels correlate with fasting glucose in humans. Presently, however, little is known about mechanisms of 3,5‐T2 effects on glucose metabolism. Here, we set out to compare effects of T3, 3,5‐T2 and another form of T2 (3,3‐T2) in a mouse model of diet‐induced obesity and determined effects of T3 and 3,5‐T2 on markers of classical insulin sensitization to understand how diiodothyronines influence blood glucose.
Cell and Tissue Research | 2016
Yianzhu Liu; Wenhao Chen; Laurie J. Minze; Jacek Z. Kubiak; Xian C. Li; Rafik M. Ghobrial; Malgorzata Kloc
Macrophages have a multitude of functions in innate and adaptive immune response and organ and tissue homeostasis. Many experimental studies are performed on bone-marrow-derived macrophages differentiated in vitro into M1 (inflammatory) and M2 (anti-inflammatory) subtypes that express different molecular markers pertaining to their prospective functions. Macrophage phenotype, polarity and functions depend on the actin cytoskeleton, which is regulated by small GTPase RhoA, its downstream effector ROCK, and non-apoptotic Caspase-3. We generated transgenic mice with the macrophage-specific deletion of RhoA and compared the effect of Rho pathway interference (RhoA deletion and ROCK and Caspase-3 inhibition) on the phenotype, polarity and expression of subtype-specific molecular markers of bone-marrow-derived M0, M1 and M2 macrophages. We show that M0 and M2 macrophages have a radically different phenotype and polarity from M1 macrophages, and that this is mirrored in dissonant response to RhoA pathway interference. The RhoA pathway interference induces extreme elongation (hummingbird phenotype) of M0 and M2 but not M1 macrophages and inhibits the expression of M2-specific but not M1-specific molecular markers. These dramatic differences in the response of M0/M2 versus M1 macrophages to the same molecular cues ought to be important considerations in the interpretation of experimental data and therapeutic use of bone-marrow-derived macrophages.
Journal of Heart and Lung Transplantation | 2017
Yianzhu Liu; Wenhao Chen; chenglin wu; Laurie J. Minze; Jacek Z. Kubiak; Xian C. Li; Malgorzata Kloc; Rafik M. Ghobrial
BACKGROUND The cellular and molecular mechanisms of chronic rejection of transplanted organs remain obscure; however, macrophages are known to play a critical role in the injury and repair of allografts. Among multiple factors influencing macrophage infiltration to allografts, the fractalkine chemokine (C-X3-C motif) ligand 1(CX3CL1)/chemokine (C-X3-C motif) receptor 1 (CX3CR1) signaling pathway and actin cytoskeleton, which is regulated by a small guanosine-5׳-triphosphatase Ras homolog gene family member A (RhoA), are of the utmost importance. To define the role of macrophage/RhoA pathway involvement in chronic rejection, we generated mice with monocyte/macrophage-specific deletion of RhoA. METHODS Hearts from BALB/c (H-2d) donors were transplanted into RhoAflox/flox (no Cre) and heterozygous Lyz2Cre+/-RhoAflox/flox recipients treated with cytotoxic T-lymphocyte-associated protein 4 immunoglobulin to inhibit early T-cell response. Allografts were assessed for chronic rejection and monocyte/macrophage functions. RESULTS The deletion of RhoA inhibited macrophage infiltration, neointimal hyperplasia of vasculature, and abrogated chronic rejection of the allografts. The RhoA deletion downregulated G protein-coupled fractalkine receptor CX3CR1, which activates the RhoA pathway and controls monocyte/macrophage trafficking into the vascular endothelium. This in turn promotes, through overproliferation and differentiation of smooth muscle cells in the arterial walls, neointimal hyperplasia. CONCLUSIONS Our finding of codependence of chronic rejection on monocyte/macrophage CX3CR1/CX3CL1 and RhoA signaling pathways may lead to the development of novel anti-chronic rejection therapies.
Scientific Reports | 2015
Huarong Chen; Renduo Song; Guohui Wang; Zonghui Ding; Chunying Yang; Jiawei Zhang; Zihua Zeng; Valentina Rubio; Luchang Wang; Nancy Zu; Amanda M. Weiskoff; Laurie J. Minze; Prince Jeyabal; Oula C. Mansour; Li Bai; William C. Merrick; Shu Zheng; Zheng Zheng Shi
Translation is a fundamental cellular process, and its dysregulation can contribute to human diseases such as cancer. During translation initiation the eukaryotic initiation factor 2 (eIF2) forms a ternary complex (TC) with GTP and the initiator methionyl-tRNA (tRNAi), mediating ribosomal recruitment of tRNAi. Limiting TC availability is a central mechanism for triggering the integrated stress response (ISR), which suppresses global translation in response to various cellular stresses, but induces specific proteins such as ATF4. This study shows that OLA1, a member of the ancient Obg family of GTPases, is an eIF2-regulatory protein that inhibits protein synthesis and promotes ISR by binding eIF2, hydrolyzing GTP, and interfering with TC formation. OLA1 thus represents a novel mechanism of translational control affecting de novo TC formation, different from the traditional model in which phosphorylation of eIF2α blocks the regeneration of TC. Depletion of OLA1 caused a hypoactive ISR and greater survival in stressed cells. In vivo, OLA1-knockdown rendered cancer cells deficient in ISR and the downstream proapoptotic effector, CHOP, promoting tumor growth and metastasis. Our work suggests that OLA1 is a novel translational GTPase and plays a suppressive role in translation and cell survival, as well as cancer growth and progression.
Journal of Immunology | 2018
Junji Xing; Ao Zhang; Laurie J. Minze; Xian Chang Li; Zhiqiang Zhang
The innate immunity is critically important in protection against virus infections, and in the case of RNA viral infections, the signaling mechanisms that initiate robust protective innate immunity without triggering autoimmune inflammation remain incompletely defined. In this study, we found the E3 ligase TRIM29 was specifically expressed in poly I:C–stimulated human myeloid dendritic cells. The induced TRIM29 played a negative role in type I IFN production in response to poly I:C or dsRNA virus reovirus infection. Importantly, the challenge of wild-type mice with reovirus led to lethal infection. In contrast, deletion of TRIM29 protected the mice from this developing lethality. Additionally, TRIM29−/− mice have lower titers of reovirus in the heart, intestine, spleen, liver, and brain because of elevated production of type I IFN. Mechanistically, TRIM29 was shown to interact with MAVS and subsequently induce its K11-linked ubiquitination and degradation. Taken together, TRIM29 regulates negatively the host innate immune response to RNA virus, which could be employed by RNA viruses for viral pathogenesis.