Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurie K. McCauley is active.

Publication


Featured researches published by Laurie K. McCauley.


Journal of Bone and Mineral Research | 2007

Bisphosphonate-Associated Osteonecrosis of the Jaw: Report of a Task Force of the American Society for Bone and Mineral Research

Sundeep Khosla; David B. Burr; Jane A. Cauley; David W. Dempster; Peter R. Ebeling; Dieter Felsenberg; Robert F. Gagel; Vincente Gilsanz; Theresa A. Guise; Sreenivas Koka; Laurie K. McCauley; Joan McGowan; Marc D. McKee; Suresh Mohla; David G. Pendrys; Lawrence G. Raisz; Salvatore L. Ruggiero; David Shafer; Lillian Shum; Stuart L. Silverman; Catherine Van Poznak; Nelson B. Watts; Sook-Bin Woo; Elizabeth Shane

ONJ has been increasingly suspected to be a potential complication of bisphosphonate therapy in recent years. Thus, the ASBMR leadership appointed a multidisciplinary task force to address key questions related to case definition, epidemiology, risk factors, diagnostic imaging, clinical management, and future areas for research related to the disorder. This report summarizes the findings and recommendations of the task force.


Nature Reviews Cancer | 2011

Cancer to bone: a fatal attraction

Katherine N. Weilbaecher; Theresa A. Guise; Laurie K. McCauley

When cancer metastasizes to bone, considerable pain and deregulated bone remodelling occurs, greatly diminishing the possibility of cure. Metastasizing tumour cells mobilize and sculpt the bone microenvironment to enhance tumour growth and to promote bone invasion. Understanding the crucial components of the bone microenvironment that influence tumour localization, along with the tumour-derived factors that modulate cellular and protein matrix components of bone to favour tumour expansion and invasion, is central to the pathophysiology of bone metastases. Basic findings of tumour–bone interactions have uncovered numerous therapeutic opportunities that focus on the bone microenvironment to prevent and treat bone metastases.


Journal of Immunology | 2004

A Toll-Like Receptor 2 Ligand Stimulates Th2 Responses In Vivo, via Induction of Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase and c-Fos in Dendritic Cells

Stephanie M. Dillon; Anshu Agrawal; Thomas E. Van Dyke; Gary E. Landreth; Laurie K. McCauley; Amy J. Koh; Charles R. Maliszewski; Shizuo Akira; Bali Pulendran

The adaptive immune system can generate distinct classes of responses, but the mechanisms that determine this are poorly understood. In this study, we demonstrate that different Toll-like receptor (TLR) ligands induce distinct dendritic cell (DC) activation and immune responses in vivo. Thus, Escherichia coli LPS (TLR-4 stimulus), activates DCs to produce abundant IL-12(p70), but little IL-10, and stimulates Th1 and Tc1 responses. In contrast, Pam-3-cys (TLR-2 stimulus) elicits less IL-12(p70), but abundant IL-10, and favors Th2 and T cytotoxic 2 (Tc2) responses. These distinct responses likely occur via differences in extracellular signal-regulated kinase signaling in DCs. Thus, Pam-3-cys induces enhanced extracellular signal-regulated kinase signaling, compared with LPS, resulting in suppressed IL-12(p70) and enhanced IL-10 production, as well as enhanced induction of the transcription factor, c-Fos. Interestingly, DCs from c-fos−/− mice produce more IL-12(p70), but less IL-10, compared with control DCs. Therefore, different TLR ligands induce distinct cytokines and signaling in DCs, and differentially bias Th responses in vivo.


Journal of Bone and Mineral Research | 2004

Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo.

Yan Xi Sun; Abraham Schneider; Younghun Jung; Jianhua Wang; Jinlu Dai; Jingcheng Wang; Kevin Cook; Nadir I. Osman; Amy J. Koh-Paige; Hyusuk Shim; Kenneth J. Pienta; Evan T. Keller; Laurie K. McCauley; Russell S. Taichman

To delineate the role of SDF‐1 and CXCR4 in metastatic prostate cancer (CaP), positive correlations were established between SDF‐1 levels and tumor metastasis. Neutralization of CXCR4 limited the number and the growth of intraosseous metastasis in vivo. Together, these in vivo metastasis data provide critical support that SDF‐1/CXCR4 plays a role in skeletal metastasis.


Nature Medicine | 2009

Inhibition of osteoblastic bone formation by nuclear factor-κB

Jia Chang; Zhuo Wang; Eric D. Tang; Zhipeng Fan; Laurie K. McCauley; Renny T. Franceschi; Kun-Liang Guan; Paul H. Krebsbach; Cun-Yu Wang

An imbalance in bone formation relative to bone resorption results in the net bone loss that occurs in osteoporosis and inflammatory bone diseases. Although it is well known how bone resorption is stimulated, the molecular mechanisms that mediate impaired bone formation are poorly understood. Here we show that the time- and stage-specific inhibition of endogenous inhibitor of κB kinase (IKK)–nuclear factor-κB (NF-κB) in differentiated osteoblasts substantially increases trabecular bone mass and bone mineral density without affecting osteoclast activities in young mice. Moreover, inhibition of IKK–NF-κB in differentiated osteoblasts maintains bone formation, thereby preventing osteoporotic bone loss induced by ovariectomy in adult mice. Inhibition of IKK–NF-κB enhances the expression of Fos-related antigen-1 (Fra-1), an essential transcription factor involved in bone matrix formation in vitro and in vivo. Taken together, our results suggest that targeting IKK–NF-κB may help to promote bone formation in the treatment of osteoporosis and other bone diseases.An imbalance in bone formation relative to bone resorption results in the net bone loss in osteoporosis and inflammatory bone diseases. While it is well known how bone resorption is stimulated, the molecular mechanisms that mediate impaired bone formation are poorly understood. Here we show that the time- and stage-specific inhibition of endogenous IκB kinase (IKK)/nuclear factor-kappa B (NF-κB) NF-κB in differentiated osteoblasts significantly increases trabecular bone mass and bone mineral density without affecting osteoclast activities in young mice. Moreover, the inhibition of IKK/NF-κB in differentiated osteoblasts maintains bone formation, thereby preventing osteoporotic bone loss induced by ovariectomy (OVX) in adult mice. The inhibition of IKK/NF-κB enhances the expression of Fra-1, an essential factor for bone matrix formation in vitro and in vivo. Taken together, our results suggest that targeting IKK/NF-κB may help to promote bone formation in the treatment of osteoporosis and other bone diseases.


Nature Medicine | 2007

NF-κB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF

Bae Keun Park; Honglai Zhang; Qinghua Zeng; Jinlu Dai; Evan T. Keller; Thomas J. Giordano; Keni Gu; Veena Shah; Lei Pei; Richard J. Zarbo; Laurie K. McCauley; Songtao Shi; Shaoqiong Chen; Cun-Yu Wang

Advanced breast cancers frequently metastasize to bone, resulting in osteolytic lesions, yet the underlying mechanisms are poorly understood. Here we report that nuclear factor–κB (NF-κB) plays a crucial role in the osteolytic bone metastasis of breast cancer by stimulating osteoclastogenesis. Using an in vivo bone metastasis model, we found that constitutive NF-κB activity in breast cancer cells is crucial for the bone resorption characteristic of osteolytic bone metastasis. We identified the gene encoding granulocyte macrophage–colony stimulating factor (GM-CSF) as a key target of NF-κB and found that it mediates osteolytic bone metastasis of breast cancer by stimulating osteoclast development. Moreover, we observed that the expression of GM-CSF correlated with NF-κB activation in bone-metastatic tumor tissues from individuals with breast cancer. These results uncover a new and specific role of NF-κB in osteolytic bone metastasis through GM-CSF induction, suggesting that NF-κB is a potential target for the treatment of breast cancer and the prevention of skeletal metastasis.


Cancer | 2003

Stromal factors involved in prostate carcinoma metastasis to bone

Carlton R. Cooper; Christopher H. Chay; James D. Gendernalik; Hyung-Lae Lee; Jasmine Bhatia; Russell S. Taichman; Laurie K. McCauley; Evan T. Keller; Kenneth J. Pienta

Prostate carcinoma (PC) frequently metastasizes to bone, where it causes significant morbidity and mortality. Stromal elements in the primary and metastatic target organs are important mediators of tumor cell intravasation, chemoattraction, adhesion to target organ microvascular endothelium, extravasation, and growth at the metastatic site.


Journal of Clinical Investigation | 2011

Human ovarian carcinoma–associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production

Karen McLean; Yusong Gong; Yunjung Choi; Ning Deng; Kun Yang; Shoumei Bai; L.M. Cabrera; Evan T. Keller; Laurie K. McCauley; Kathleen R. Cho; Ronald J. Buckanovich

Accumulating evidence suggests that mesenchymal stem cells (MSCs) are recruited to the tumor microenvironment; however, controversy exists regarding their role in solid tumors. In this study, we identified and confirmed the presence of carcinoma-associated MSCs (CA-MSCs) in the majority of human ovarian tumor samples that we analyzed. These CA-MSCs had a normal morphologic appearance, a normal karyotype, and were nontumorigenic. CA-MSCs were multipotent with capacity for differentiating into adipose, cartilage, and bone. When combined with tumor cells in vivo, CA-MSCs promoted tumor growth more effectively than did control MSCs. In vitro and in vivo studies suggested that CA-MSCs promoted tumor growth by increasing the number of cancer stem cells. Although CA-MSCs expressed traditional MSCs markers, they had an expression profile distinct from that of MSCs from healthy individuals, including increased expression of BMP2, BMP4, and BMP6. Importantly, BMP2 treatment in vitro mimicked the effects of CA-MSCs on cancer stem cells, while inhibiting BMP signaling in vitro and in vivo partly abrogated MSC-promoted tumor growth. Taken together, our data suggest that MSCs in the ovarian tumor microenvironment have an expression profile that promotes tumorigenesis and that BMP inhibition may be an effective therapeutic approach for ovarian cancer.


Cancer and Metastasis Reviews | 2001

Prostate carcinoma skeletal metastases: cross-talk between tumor and bone.

Evan T. Keller; Jian Zhang; Carlton R. Cooper; Peter C. Smith; Laurie K. McCauley; Kenneth J. Pienta; Russell S. Taichman

The majority of men with progressive prostate cancer develop metastases with the skeleton being the most prevalent metastatic site. Unlike many other tumors that metastasize to bone and form osteolytic lesions, prostate carcinomas form osteoblastic lesions. However, histological evaluation of these lesions reveals the presence of underlying osteoclastic activity. These lesions are painful, resulting in diminished quality of life of the patient. There is emerging evidence that prostate carcinomas establish and thrive in the skeleton due to cross-talk between the bone microenvironment and tumor cells. Bone provides chemotactic factors, adhesion factors, and growth factors that allow the prostate carcinoma cells to target and proliferate in the skeleton. The prostate carcinoma cells reciprocate through production of osteoblastic and osteolytic factors that modulate bone remodeling. The prostate carcinoma-induced osteolysis promotes release of the many growth factors within the bone extracellular matrix thus further enhancing the progression of the metastases. This review focuses on the interaction between the bone and the prostate carcinoma cells that allow for development and progression of prostate carcinoma skeletal metastases.


The New England Journal of Medicine | 2010

Teriparatide and osseous regeneration in the oral cavity

Jill D. Bashutski; Robert Eber; Janet S. Kinney; Erika Benavides; Samopriyo Maitra; Thomas M. Braun; William V. Giannobile; Laurie K. McCauley

BACKGROUND Intermittent administration of teriparatide, a drug composed of the first 34 amino acids of parathyroid hormone, has anabolic effects on bone. Although teriparatide has been evaluated for the treatment of osteoporosis and for the healing of fractures, clinical trials evaluating it for the treatment of osseous conditions of the oral cavity in humans are lacking. METHODS A total of 40 patients with severe, chronic periodontitis underwent periodontal surgery and received daily injections of teriparatide (20 μg) or placebo, along with oral calcium (1000 mg) and vitamin D (800 IU) supplementation, for 6 weeks. The patients were followed for 1 year. The primary outcome was a radiographic linear measurement of alveolar bone level. Secondary outcomes included clinical variables, bone turnover markers in serum and oral fluid, systemic bone mineral density, and quality of life. RESULTS Radiographic linear resolution of osseous defects was significantly greater after teriparatide therapy than after placebo beginning at 6 months, with a mean linear gain in bone at 1 year of 29% as compared with 3% (P<0.001). Clinical improvement was greater in patients taking teriparatide than in those taking placebo, with a reduction in periodontal probing depth of 33% versus 20% (2.42 mm vs. 1.32 mm) and a gain in clinical attachment level of 22% versus 7% (1.58 mm vs. 0.42 mm) in target lesions at 1 year (P = 0.02 for both comparisons). No serious adverse events were reported; however, the number of patients in the study was small. No significant differences were noted with respect to the other variables that were assessed. CONCLUSIONS Teriparatide, as compared with placebo, was associated with improved clinical outcomes, greater resolution of alveolar bone defects, and accelerated osseous wound healing in the oral cavity. Teriparatide may offer therapeutic potential for localized bone defects in the jaw. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT00277706 .).

Collaboration


Dive into the Laurie K. McCauley's collaboration.

Top Co-Authors

Avatar

Amy J. Koh

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martha J. Somerman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge